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Hodgkin and Huxley’s legacy: the science of
neural supercomputing

The small sub-tropical island of Okinawa, some 400 miles south of

Japan, is home to a unique colony of creatures. About the size of

large rabbits, they possess strange translucent heads into which a

single eye is embedded. They spend most of their time foraging

and mating and communicate with each other using a luminescent

bulb located towards the small of their backs. Their predilection for

reproduction has allowed their primitive genome to evolve rapidly

to adapt to their unusual circumstances. For their food is a power

supply to charge their battery packs, and mating involves infrared

data transfer from their hard drives. They are cyber-rodents:

mobile, autonomous robots confined only to their home in the

Okinawa Institute of Science and Technology by the doors of

the laboratory.

There are two remarkable things about the cyber-rodents. First,

they demonstrate that remarkably little computational power can

sustain ‘awake’, behaving organisms. Their brain is a small four-

CPU onboard computer, not a giant supercomputer as you might

expect. Second, many algorithms used by the rodents are based

on those thought to be implemented by live rats and indeed

humans. These algorithms control basic behaviours of self-preser-

vation, mimicking the functions thought to be controlled by neu-

romodulators such as serotonin and dopamine.

This second fact underpins a basic fact about neuroscience: if

we want to understand the brain, we need to understand how it

actually processes information. Like it or not, the brain is a com-

puter, and in the same way, as we cannot hope to understand the

brain of the cyber-rodent without a fair knowledge of computer

science, so too we are not going to understand the human brain

without some sort of neural computer science framework.

It is easy to feel a bit daunted by this prospect. With 100 billion

neuronal processing units (not to mention those involving glia),

each with thousands of synaptic connections, the astronomical

complexity that the brain harbours is abundantly clear. If anything,

this sentiment is aggravated by the sheer scale of recent

big-money projects popular with the media. For instance, the

‘Blue Brain’ project is attempting to build a full-scale model of

the human organ based on assembling biologically accurate simu-

lations of single neurons and exploring behaviour of the assembled

network using the formidable Swiss BlueGene supercomputer.

In much the same way, The Human Connectome project is

attempting to map all the connections in the brain, by painstak-

ingly identifying neuronal connections using fibre-tracing studies.

But despite the many insights and tools that these projects will

provide, one thing they seem unlikely to yield when completed

and ‘turned on’ is a behaving and talking android.

This, then, still leaves us with the problem of how to understand

behaviour in terms of information processing. David Marr, the

brilliant computer scientist-turned-theoretical neuroscientist, fam-

ously proposed three distinct levels of understanding how the

brain works: characterizing the computational problems that the

MATHEMATICS FOR

NEUROSCIENTISTS

By Fabrizio Gabbiani and
Stephen Cox 2010.
New York: Academic Press
ISBN: 978-0-12-374882-9
(Hardcover)
Price: E71.95/$US99.95

MATHEMATICAL

FOUNDATIONS OF

NEUROSCIENCE

By G. Bard Ermentrout and
David H. Terman 2010.
New York: Springer
ISBN: 978-0-387-87707-5
(Hardcover)
Price: £53.99/$US74.95

doi:10.1093/brain/aws184 Brain 2012: Page 1 of 4 | 1

� The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

For Permissions, please email: journals.permissions@oup.com

 Brain Advance Access published July 24, 2012
 at atrlibrary on A

ugust 20, 2012
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


brain solves at one level; specifying the algorithmic solution used

at the next and probing its implementation by neurons at the third

level.

Consider, as an illustration, the problem of object recognition

given hazy visual sensory input. The computational problem

can be formalized as data classification given noisy information.

A putative algorithmic solution to this problem would be Bayesian

decision theory, which would require representing and integrating

probability distributions relating to the prior probability of an

object identity, and its likelihood given the sensory input and

computing the true (posterior) probability using Bayes’ rule. This

is the ‘software’ solution. If such an algorithm was used by the

brain, then these computations need somehow to be physically

implemented by the ‘hardware’ of the brain. One such possibility

might be to code the probabilities with the spike trains of popu-

lations of cortical neurons and integrate their activities with a

simple neural network (e.g. Beck et al., 2008).

This simplified example illustrates the goal of traversing different

levels of understanding that potentially take one from the activity

of individual neurons to the behaviour of an organism. But under-

standing the brain at such vastly different scales—the fundamental

aim of systems neuroscience—is a formidable challenge. The com-

plexity of neurons means that this is only going to be possible with

quantitative models of the brain at each level—a somewhat inti-

midating prospect for many biologists who lack a graduate train-

ing in mathematics, computer science or physics.

Mathematics for neuroscientists by Gabbiani and Cox shows

that the sophisticated mathematical methods involved in under-

standing and modelling the brain are not necessarily out of reach

for the ‘ordinary’ neurobiologist. Based on courses taught by the

authors, the book is a superb introduction to quantitative methods

that take the reader on a journey from ion channel to network. In

doing so, it follows the history of many pivotal neuroscience dis-

coveries along the way, asking the same questions and using the

same analysis as was used by the pioneering neuroscientists that

discovered them.

Gabbiani and Cox start by developing dynamical models of ion

channels to understand passive membrane potentials. The math-

ematics needed to do this involves specifying the properties of

different ion channels as a series of partial differential equations.

Having introduced the basic problem here, the authors then add a

chapter dealing specifically with the problem of how to solve those

equations, using algebraic, numerical and approximate solutions.

This sort of chapter characterizes the approach of the book—to

use the biological problem to introduce and frame the mathemat-

ical problem, and then slowly to take the reader through the so-

lution, incorporating all the intermediate analytical steps and

equations that are usually skipped over in more concise texts.

Thus, the reader is guided through the properties of active mem-

branes, and in Chapter 4, to the most famous equation in neuro-

science—Hodgkin and Huxley’s model of the action potential.

Their mechanistic model marks the historically defining point at

which the basic computing unit of the brain can be said to have

been discovered, and with it they founded a new discipline in

neuroscience—neural computation.

Quantitative models of neuronal signalling developed rapidly

after Hodgkin and Huxley. The basic membrane ion channel

equations considered the voltage at a single point on the neuronal

membrane, but to understand information transfer, one needed to

know how current travels from one point to the next along den-

drites and axons. One of the pioneers of modelling this process

was Wilfred Rall, who among others applied Cable Theory (ori-

ginally developed for telegraphic cables) to understand the den-

drite as an electrical conducting cylinder. As described in Chapters

6–9, this can be extended to a long length of dendrite with vary-

ing diameter by treating it as a series of adjacent, connected com-

partments. Dendrites are of course more complicated than that.

They are typically highly branched and often have far more active

membranes than is usually appreciated, but the theory can be

extended to deal with much of this complexity.

As matters start to get complicated, Chapter 10 introduces a

simplified model neuron—the leaky integrate-and-fire neuron—

which has been invaluable to reductionist single cell systems

aimed at modelling the properties of networks involving multiple

neurons (such as CA3 hippocampal networks), nicely illustrating

the continuity of theory as one scales up from ion channel, to

single neuron, to network. In a further drive for simplification,

Chapter 14 also describes a neat statistical approach to dimension-

ality reduction of complex neuronal models using singular value

decomposition.

One of the most mysterious things about the brain is the con-

stant hum of background neural noise and the randomness appar-

ently inherent in neural signals. Appreciating the importance of

this intrinsic biological uncertainty turns out to be at the heart

of many mathematical aspects of neural information processing.

Gabbiani and Cox provide a limpid exposition of the core concepts

of probability theory necessary for the diversity of areas to which

it has now proved critical. Perhaps, the clearest early demonstra-

tions of this were in models of synaptic transmission, embodied by

Katz’s seminal work on quantal release, uncovering another fun-

damental component on the brain’s microprocessing unit.

It is now abundantly clear that grasping the mathematics of

stochastic processes is essential for understanding neuronal signals,

and these methods turn out to be critical for understanding cor-

relation and coherence across neural spike trains, the mainstay of

so much in modern neurophysiological data analysis. Gabbiani and

Cox beautifully show how this can be applied to early visual pro-

cessing, providing clear systems-level insight of how real sensory

information can be coded and processed by networks of real neu-

rons founded on Hubel and Wiesel’s remarkable discovery of

simple and complex cells in the cat primary visual cortex. Their

work provided one of the most striking insights into how a neural

code can represent key steps in the information processing of a

sensory input and critical insight into the mapping of neurophysio-

logical responses to behaviour.

Mathematics for neuroscientists is remarkable in combining

both authority and accessibility in describing transition from the

dynamics of neuronal signalling to the statistics of information

processing. It appeals to, and deserves, a wide audience by func-

tioning both as a textbook on neural computation for biologists

and on neurophysiology for mathematicians. Indeed it realizes this

aim slightly better than as a primary textbook of mathematics for

neuroscientists, since it is likely that many classically trained neuro-

scientists will have to resort to other more basic mathematical
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texts to get a firm grounding in areas such as dynamical systems,

linear algebra and matrix theory and probability theory. But that

does not detract from the clarity by which the authors apply these

concepts to neuroscience.

Much of the same motivation underlies Mathematical

foundations of neuroscience by Ermentrout and Terman. They

set out in a similar, albeit more concise, fashion covering the fun-

damentals of the Hodgkin–Huxley equations and Cable Theory.

However, they soon lay the groundwork for a specific approach

where they have been at the forefront—applying dynamical sys-

tems theory at multiple levels of analysis. They start by introducing

phase planes—a geometric representation of the solution to the

membrane ion channel equations, which depict the dynamic evo-

lution of the voltage trace following an injection of current. They

then describe how fixed points and limit cycles emerge, reflecting

periodic solutions that result in oscillatory firing of the model

neuron. Within this framework, transitions between different dy-

namic states can then be studied with powerful analytical tools

such as bifurcation theory.

As the authors remark, Hodgkin and Huxley’s decision to study

the squid axon was inspired, or just plain lucky, given the small

number of ion channels it has in comparison with mammalian

neurons. Ultimately, however, some of these other channels are

necessary to understand more complex patterns of activity; and

Ermentrout and Terman elegantly illustrate how their incorporation

predicts much of the variety of bursting patterns seen in certain

brain regions. Well-known examples are the sleep rhythm gener-

ators in the thalamus and respiratory rhythm generators in the

pre-Bötzinger complex in the medulla.

But neurons do not burst in isolation, and the authors extend

the dynamical systems approach to the spatial propagation of

action potentials and spike trains down the axon, and the gener-

ation of postsynaptic currents, by considering neurotransmitter

sensitive ion channels. This is central to the transition from the

single neuron to networks of neurons, approached head-on in

the second part of the book.

Neuronal dynamics gets much more interesting when one starts

to connect neurons together. One of the first clear examples came

from the study of locomotion in the lamprey eel, and the discov-

ery of networks of neurons that could sustain rhythmic behaviour

in the absence of any external input—so called central motor pat-

tern generators. Such networks of neurons function as primitive

‘mini-brains’ in their own right, as they continue to function when

severed from the rest of the nervous system. This also makes them

a perfect target to test the validity of dynamic models based on

coupling single neuron models together. The subsequent success

of such simulations in yielding stable oscillatory patterns of activity

was therefore a major milestone in neural computation.

However, understanding the behaviour of large-scale popula-

tions of neurons requires scaling up from the dynamics of

individual neurons, and their synaptic coupling, to embrace

the complexities that arise from different network topologies.

Clearly, the state space becomes extremely large when one con-

siders the diversity of neural architectures found in real brains. The

authors review some of the key parameters likely to be important,

such as the sparseness and homogeneity of connections, the pro-

portions of excitatory and inhibitory connections and their speed.

With such a large parameter space, however, one of the most

challenging problems is knowing what to simplify or approximate

without losing too much biological validity. This is an open ques-

tion, because experimentally it remains difficult to study large

numbers of individual neurons simultaneously. Instead, many ex-

perimental and clinical methods are stuck with the aggregate

behaviour of large numbers of neurons, such as local field poten-

tials, magneto- and electroencephalography and functional MRI.

But does this matter, or can we adequately understand large

neuronal populations by considering their average firing rates?

Ermentrout and Terman convey a diplomatic agnosticism on this

point. But they highlight one of the most influential network

models, the Wilson–Cowan model, which uses simplified excita-

tory and inhibitory neurons to study how neuronal populations

interact. This yields a basic dynamic systems analysis that can be

applied to a range of competitive and stimulus-evoked behaviours,

such as binocular rivalry and perceptual decision making. Indeed

many systems level models of more complex cognitive behavioural

phenomena, such as working memory, are direct descendants of

this dynamical approach (for instance neural mass models and

neural field theory; Deco et al., 2008).

Although Mathematical foundations of neuroscience provides

a thorough survey of the field, it is perhaps less of a textbook

than Mathematics for neuroscientists but rather a more compre-

hensive analysis of the application of dynamical systems theory

to neuroscience. Notably, the approach in both books is founded

on understanding information processing in terms of the neuro-

physiological properties of neurons—reflecting the authors’ con-

siderable contributions in this area. Neither, however, considers

top–down approaches to information processing. That is they

ask the question ‘What can neurons compute given what we

know about their physiological properties?’ rather than ‘What

must neurons compute to produce behaviour?’ For this reason,

large areas of theory that stem from reverse-engineering behav-

iour are not covered. This includes control theoretic models of

motor learning, reinforcement learning models of decision

making and statistical and information theoretic models of repre-

sentational learning. Thus neglected are a number of fascinating

areas such as fear conditioning in the amygdala (McNally et al.,

2011) and spatial encoding in the hippocampus (Burgess et al.,

2007), which have been so successful in highlighting tangible links

between the multiple levels along the scale from molecular mech-

anisms to behaviour.

From a clinicians’ perspective, the world of single neuron com-

putation and non-linear neuronal dynamics might at first seem

somewhat distant from the practical reality of neurological disease.

But this is an illusion, and indeed some of the most common dis-

eases in neurology can easily be classified as disorders of neural

dynamics. An obvious example is epilepsy, and indeed there is a

long history of non-linear systems analysis in the study of seizure

initiation and propagation. A popular example is in the use of

bifurcation analysis of neural fields to predict phase transition to

chaotic dynamics (Grimbert and Faugeras, 2006). Perhaps less well

known is that symptoms in Parkinson’s disease are closely corre-

lated with abnormal synchronous oscillatory activity recordable in

multiple levels of the basal ganglia loop, and efficacy of treatment

with deep brain stimulation of the nucleus seems tied to
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modulation of this abnormal firing (Hammond et al., 2007).

Finally, and most aesthetically illustrative, is migraine: it has long

been known that disturbed cortical synchronization coincides with

the onset of migrainous attacks. Work by Ermentrout and Cowan

(1979) has suggested that abnormal synchronous activity might

account for the beautiful and complex geometric patterns that

characterize the visual aura experienced by many patients.

All these examples should precipitate new avenues for

treatment, in particular in one of the most exciting frontiers in

neurology—brain-machine interface technologies. Future neural

prostheses are likely to involve simultaneous decoding of complex

neurophysiological signals coupled with selective, temporally

sophisticated modulation of neuronal activity using techniques

such as optogenetics. At some point in the future, these therapies

will be in the hands of clinicians to manage, and ‘computational

neurology’ will have come of age as a new clinical discipline.

There are many fascinating questions that lie ahead. Is the back-

ground neural activity merely noise, or does it reflect computation

of some mysterious unknown function; does the dynamic syn-

chronization of activity across spatially distant areas underlie the

binding of the sensory world into a coherent and meaningful con-

scious perceptual experience; to what extent does the specific

timing of individual spikes matter and are we missing some crucial

neural code when considering only the average rates in neural

populations? This last question—the true nature of the neural

code—is perhaps the greatest unanswered question in biology.

And it is the field of neural computation, and no other, which

will provide the answer; and with it fulfil the legacy provided by

the pioneering work of its founding fathers, Alan Hodgkin and

Andrew Huxley.

It is easy to get lazy about neural computation and become

sidetracked by philosophical conversations about whether the

brain can ever understand itself, and can we understand con-

sciousness in terms of computation. But this should not detract

from the simple truth that the brain computes to behave, and

we will not understand behaviour, and its pathologies, until we

understand the underlying computations.
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