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Reinforcement Learning describes a general method for trial-

and-error learning, and it has emerged as a dominant

framework both for optimal control in autonomous robots, and

understanding decision-making in the brain. Despite their

common roots, however, these two fields have evolved largely

independently. In this perspective, we consider how each now

face problems that could potentially be addressed by insights

from the other, and argue that an interdisciplinary approach

could greatly accelerate progress in both.
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Introduction
Humans and autonomous robots share a common prob-

lem: how to survive in a complex, changing and dangerous

world with little a priori knowledge, but with the require-

ment to continuously satisfy their appetites and avoid

damage over long lifetimes. The key to survival is learn-

ing, and using what is learned to guide further decisions in

as safe and efficient way as possible. But this is a difficult
www.sciencedirect.com 
problem, with numerous challenges related to the practi-

calities of behaving in real physical environments full of

noise and unpredictability. In recent years, Reinforce-

ment Learning (RL) has emerged as a dominant theoret-

ical framework to understand decision-making through an

interaction with the world [1], and RL has underpinned

research in both neuroscience and robotics. But despite a

shared problem, the strategies which engineering science

has developed differ in many respects with those, in

which brain appears to adopt. This raises the question

as to whether brain-like algorithms can be shown to work

in real control problems far beyond the highly controlled

experiments, from which the models were derived. In

turn, it is also possible that brain-inspired solutions might

be capable of improving aspects of robot control. In this

perspective, we outline a series of areas where an inter-

disciplinary approach may have particular promise.

Reinforcement learning

The goal of RL is to learn how to make decisions in a

way that maximises future returns or minimises cost

given an uncertain, but at least partly predictable, envi-

ronment. In particular, RL addresses the credit assign-

ment problem, which is ubiquitous in real-world deci-

sion-making problems. This credit assignment problem

arises from the fact that many prediction and control

situations (‘Markov Decision Processes’) involve com-

plex sequences of states that precede an important

outcome (i.e. a reward or punishment), making it diffi-

cult to know at what point the state or action took a turn

for the better or worse. RL solves this by continually

holding a prediction of the expected sum of future

outcomes (i.e. the value), and updating this value as

one moves through time (more formally, it solves the

Bellman equation) [1]. If this new information changes

the predicted value, then a prediction error is generated,

and propagated back to earlier states to update their

predictions so as to be more accurate in the future. In this

way, RL algorithms can deal with sequential (higher-

order) learning in a way that classic psychological learn-

ing models (such as the Rescorla–Wagner model) cannot.

Because of its ability to develop a control policy with

minimal supervision, RL seemingly offers a practical tool

for many optimal control problems [2].

Applications of RL to robotics in earlier days of research

focused on simple robot control tasks, such as playing the

game of backgammon in a simulation environment [3],

repetitive pick-and-place [1], recycling pushing boxes

with a wheeled mobile robot [4], positioning and inserting
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a peg [5], or learning frying pan skills with a robot arm [6].

Subsequently, advanced RL techniques have been

applied to solve more challenging issues, including

humanoid robot control [7], autonomous car driving [8],

learning a control policy in highly complex environments

[9–11], learning large repertoires of skills with robot arms

[12], autonomous helicopter control [13], drone control

[14], and robot swarm control [15]. This illustrates how

the broad application of RL has extended from motor

control to action control (i.e. decision-making).

Although RL’s roots lie in early models of associative

learning [16], the overt application to neuroscience

emerged somewhat later, in terms of models of classical

(Pavlovian) conditioning [1]. The idea that the brain

might be physically implementing RL algorithms [17�

,18] eventually found evidence in primate experiments

showing what appeared to be direct encoding of a

reward prediction error by dopamine neurons [19�].
Evidence in humans subsequently came from func-

tional neuroimaging experiments, where RL prediction

errors were found for both reward and punishment

learning [20�,21�]. This stimulated enormous interest

in RL models of human decision-making,  and led to a

number of key findings, including of distinct circuits for

learning to make predictions and actions (Pavlovian and

instrumental conditioning, respectively) [22], multiple

circuits for action learning involving encoding state and

action space with different levels of complexity [23],

and of different strategies used to balance exploration

with exploitation [24,25].

But for many engineering applications, the practical

utility of RL was limited in the face of the high

dimensionality of sensors and actuators, and created a

need for effective techniques at encoding state and

action representations. A key breakthrough was the

application of deep learning to approximate value func-

tions, and this rapidly demonstrated success with agents

operating in a high dimensional input space [9–11], as

well as in a continuous action space [12,26,27�]. Notably,

RL agents were subsequently shown to outperform

humans [9,10], and to learn without expert knowledge

[11]. This provided a dramatic leap in both performance

and efficiency across a wide range of real-world pro-

blems: from highly complex simulated games [9,11] to

robot manipulation [12,28].

Although understanding autonomous control in robotics

and neuroscience have proceeded somewhat indepen-

dently, they may often be dealing with the same control

problem (e.g. navigation, collision avoidance), especially

since an important application of robotics is to support

humans in their natural environment. With this conver-

gence comes a number of areas where cross-fertilisation of

knowledge between the two might provide valuable new

insights, as we describe below (also see Figure 1).
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Why decision neuroscience needs robotics
Despite significant progress in resolving the sophistica-

tion of computational models of brain-based learning and

decision circuits, there is still a gulf between what they

can currently explain and what they need to. Below, we

outline three key challenges.

Learning in real environments

Many models of human/animal decision-making are

applied to experiment data that involves highly controlled

environments, but as they become more complex, their

validity outside of these contexts becomes more difficult

to assume for several interacting reasons. First, almost all

current models are discrete-state/time models, and

extending them to continuous space is non-trivial [29].

This is because they require some way of dealing with the

potential huge dimensional state space and action space,

for example by partitioning or function approximation,

whilst maintaining temporal smoothness of action

[26,30,31]. Second, models that work in simulation are

often not robust when operating in hardware — a phe-

nomenon called the ‘reality gap’. This is because of

multiple sources of sensory noise and motor noise (flexi-

bility, friction and so on) that accompany any physical

system, and the nature of this noise is difficult to predict.

Third, uncertainty arises when building control systems

that need to operate over very long periods (i.e. over

development and lifetimes), because there are many

changes in the noise and dynamics of the body/environ-

ment that happen over multiple time scales. Good evi-

dence suggests that human decision-making adapts over

such timescales (e.g. risk-taking, impulse inhibition, deci-

sion meta-cognition). These factors interact and the fact

that without additional evidence, one should be cautious

in assuming that current neuroscience models of decision-

making will always work effectively across real-world

situations and environments.

Modelling complex disease

One of the main objectives of decision neuroscience is to

understand how its disruption might lead to disease.

Computational neurology and computational psychiatry

aim to understand how disease symptomatology emerges

from underlying disturbance of specific computational

elements that is how differences in the architecture or

parameterisation of computational operations cause the

disease state [32–34]. However, it seems likely that many

diseases do not involve a single computational element,

but rather a set of interacting elements (a sort of

‘computome’) that interact together generate disease phe-

notype (Figure 2). But as the complexity of the underly-

ing models increases, making reliable predictions about

how overall behaviour is changed when a specific com-

putation element, or set of elements is altered, becomes

much more difficult.
www.sciencedirect.com
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Figure 1
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Overview of neuroscience — robotics approach for decision-making. The figure details key areas for interdisciplinary study.
For example, chronic lower back pain is thought to be

primarily driven by brain-based factors (as opposed to

overactivity of peripheral pain-sensing neurons (nocicep-

tors) [35]. There are several distinct factors proposed for

how chronic pain might develop, including excessive pain

value predictions [36], reduced perception of pain con-

trollability (also a proposed factor in depression) [37],

impaired relief prediction [38], negative expectation bias

in perceptual inference [39], overgeneralisation in both

active and passive pain conditioning (also a proposed

factor in anxiety) [40], and others. Each of these factors

relates to distinct computational operations within the

broad RL framework, and it is probable that they repre-

sent independent risk factors that when coexisting, inter-

act to generate sufficient an effect to support the mainte-

nance of pain. However, the complexity of this

interaction means that how this happens is difficult to

predict.

Evolutionary modelling

A key problem in decision neuroscience is to understand

how and why certain behaviours and systems exist in the

way that they do, especially since the very nature of

human decision-making seems to make it prone to weak-

nesses such as impulsivity and compulsivity. Although
www.sciencedirect.com 
laboratory experiments can address the proximate basis of

much of the complexities of decision-making, under-

standing why neural systems are organised in the way

they are (i.e. the ultimate basis) is critical to rationalising

and predicting broader questions about the ‘design’ of

these systems in the first place.

Evolutionary robotics provides a method for developing

computational control architectures based on biologically

inspired evolutionary algorithms (i.e. Darwinian selection

based on a fitness function), and so can be used to explore

and mimic the selective pressures on neural control

systems that have arisen during the course of animal

evolution. This is a valuable approach because the vast

complexity of the environment necessitates that decision

systems have evolved primarily as learning systems, as

opposed to hard-wired stimulus-response systems. How-

ever, the evolutionary pressures on learning systems are

much less easy to predict, especially when multiple

systems operate in parallel. However these pressures

are critical in determining the complex architecture

and meta-parameters of learning [41,42]. Related to this

is understanding how values (both reward and punish-

ment) are bestowed through evolution on certain stimuli,

such that they have become ‘primary reinforcers’ of
Current Opinion in Behavioral Sciences 2019, 26:137–145
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Figure 2
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Computomics of disease. The diagram summarises some of the key parameters that are involved in human decision-making that can be proposed

to be important for the potential development of neuropsychiatric disease. The general hypothesis is that these factors interact in difficult-to-

predict ways to generate the overall disease phenotype.
behaviour [43]. This is especially important for certain

states that have intrinsic value (e.g. novelty seeking,

endogenous control of pain [44]), since it allows animals

to navigate complex decisions in which the ultimate

benefit of a decision may be long-term, beyond the

bounds of learnable experience. One area where an

evolutionary robotics approach may have particular value

is in aspects of social decision making (e.g. sexual selec-

tion, cooperation and altruism, and observational learning

and teaching). That is, many social decisions involve

considerable complexity since action values depend on

inferring and understanding the action and learning sys-

tems of others [45], and likely involve a complex combi-

nation of learning and intrinsic values that is difficult to

predict without formal evolutionary simulation.

Taken together, these three challenges place limits on

developing our understanding of decision mechanisms in

neuroscience, and appeal to robotics-based approaches.

Advanced simulation platforms and hardware implemen-

tation could offer a stepwise increase in demonstrating
Current Opinion in Behavioral Sciences 2019, 26:137–145 
the computational validity and general applicability of

brain-based models. And, in principle evolutionary robot-

ics provides simulation platforms that allow interrogation

of how such complex systems might emerge and how

different aspects of decision-system might trade off

against others, revealing the nature of traits that can

create risk factors for neuropsychiatric disease.

Why robotics needs decision neuroscience
There are many previous examples in robotics, in which

biological inspiration has led to improvements in design

and control systems, for example, in motor control and

artificial vision. It is, therefore, plausible that decision

neuroscience could also offer novel insights, and below

we describe three areas where this may be realistic.

Multiple controller architectures

In contrast to most robot-control algorithms, humans and

animals have multiple control systems that govern deci-

sions and actions (Figure 3). First is a system for innate

responses, which emit simple hard-wired behaviours in
www.sciencedirect.com
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Figure 3
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Overview of human decision-making systems in the brain. Ultimately, the brain is thought to implement a nested hierarchy of control systems: that

range from implementation evolutionary acquired response systems that are quick and computationally efficient, to more experience-based

learning that involves progressively higher levels of computational sophistication.
response to inherently salient stimuli (generalised

reflexes such as approach or withdrawal, or specific reflex-

ive actions such as leg-flexion to a shock). Second, these

responses can also be transferred to predictive neutral

stimuli through classical (Pavlovian) conditioning, which

allows the behaviours to be emitted early. Furthermore,

there are separate systems for reward and punishment,

dealing with a full spectrum of positive and negative

outcomes through specifically tuned anticipatory

responses [46]. Third, animals learn stimulus-response

actions (‘habits’), in which rewards or punishments rein-

force actions that lead to them, such that after repeated

pairing the actions are emitted ‘automatically’ when cued.

Here too, there is also evidence for separate reward and

punishment systems, tracking both best-case and worst-

case scenario actions [47�,48]. Finally, a cognitive (‘goal-

directed’) control system can guide actions by learning a

model of environment, and leverages the learned knowl-

edge base to quickly adapt to the change in the environ-

ment structure, such as a latent state-space or a reward

structure. This allows great behavioural flexibility over
www.sciencedirect.com 
performance when an environment structure changes.

While this sophisticated control strategy is considered

to be optimal in many scenarios, it requires a high

computational cost and takes a longer time to process

than the stimulus-response control system.

Each system is best in different situations: the innate/

Pavlovian systems exploits evolutionarily learned knowl-

edge and allow rapid responses before much learning has

happened, in effect providing an evolutionary prior on

action space. Goal-directed learning allow sophisticated

modelling of the world, supporting planning and flexibil-

ity [49]. And habit learning provides stability in the face

of inherent unpredictability and over extended time,

alongside considerable computational efficiency [50].

Given this multi-controller architecture, the brain, there-

fore, needs to decide how to integrate the different

systems, and the brain appears to use a number of

strategies, ranging from a simple scaling of system out-

puts (between reward and punishment systems), to direct

competition between systems based on uncertainty by a
Current Opinion in Behavioral Sciences 2019, 26:137–145
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‘meta-controller’ (between stimulus-response and goal-

directed systems) [51–53].

Rapid and single-shot learning

Control algorithms for robots, especially in AI settings,

usually require a large amount of experience. On the

other hand, humans learn fast, often after a single experi-

ence. Consequently, recent insights into the neuroscience

of rapid learning in biological systems may provide prac-

tical insight to robotics.

First, it can improve optimality of robot learning. For

example, a recent neuroscience study found that when

there is only few examples available, or when interactions

with environment are limited, humans have a strong

tendency to increase their learning rates; they strive for

quickly making sense of unknown parts of environment

by compromising safe learning, rather than performing

incremental learning [54–56]. A robotic system that can

flexibly adjust its own learning speed would resolve a

tradeoff between performance and speed.

Second, implementing human-style rapid learning in

robots would improve human–robot interaction. Single-

shot inference or jumping-to-conclusion is associated

with suboptimal behaviour that a rational robotic agent

cannot predict. For example, a neuroscientific basis of

rapid learning and inference [55] offers great potential for

building robots that can interact with suboptimal entities

like humans. This can also foster social trust of the human

users in service robotics environment.

Single-shot learning can be implanted into robots by

taking up the idea of hippocampal episodic memory

controller. It is originated from a theoretical idea in

decision neuroscience, which has emerged as an effective

alternative in the presence of a large amount of measure-

ment noise in the environment or in the very early stage of

learning [50]. The episodic memory control can guide

decisions based on a single past episode that the agent

remembers [57,58], thereby allowing itself to kick-start

learning when the environment becomes too complex or

too noisy, or even when the it needs to transfer from one

task to another.

Metacognitive learning

Reinforcement learning algorithms are optimistic (or

overconfident) in that their current predictions are

expected to be correct even if they are sampling from

the part of the environment they haven’t learned about

enough. Learning without estimation of its own predic-

tion performance (i.e. overconfident learning) may lead to

resorting to a suboptimal policy (local minima problem),

especially in a complex and dynamic environment.

Metacognition refers to an ability to evaluate the agent’s

own thought processes, such as perception [59], valuation
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[60,61] and learning, inference [62], and to report the

level of confidence/uncertainty about her choice leading

to an outcome that she predicted [63]. The change in the

confidence level depends on her ability to learn, for

example, a slow learner builds up confidence slowly,

but it may also depend on various environmental con-

texts. For example, low task difficulty or low environ-

mental noise would make the learning agent confident,

leading to more decisive actions, whereas losing confi-

dence in opposite cases would lead to a more cautious and

defensive strategy. The metacognitive learning thus

allows for rapid adaptation to the context change while

maintaining robustness against environmental noise. This

raises an optimistic expectation that the metacognitive

learning agent would compensate for the weakness of

model-based reinforcement learning that it inevitably

suffers from a large amount of prediction error when

the environment is highly noisy [52].

Growing evidence from decision neuroscience about

computational mechanisms of metacognition and confi-

dence-based decision-making [60,61] may lend an insight

into metacognitive learning algorithm design for robots

[64]. It also has an enormous potential for further aug-

menting robot intelligence in many different ways. First,

this ability would guide valuation taking into account

uncertainty. Second, it could help resolve exploration–

exploitation tradeoffs. For example, because a metacog-

nitive agent has the ability to distinguish what it has

learned from what it hasn’t figured out yet, it can deter-

mine when to explore to learn more about the task and

when to exploit to achieve a goal. Naturally a successful

implementation of metacognitive reinforcement learning

would bring about performance boost of decision-making

models [65,66].

Taken together, neuroscience offers insight into a set of

solutions that might benefit robot control systems. Each

involves adding complexity — multi-controller architec-

tures, additional systems for rapid inference, and super-

visory systems — but each of these seem to evolved in

humans to deal with the practicalities and reality of living

in the real-world. Although our current understanding of

how the brain achieves are yet at a point to be directly

implementable in robots, the principles they embody

could inspire development of comparable strategies that

confer flexibility and efficiency in robotics.

Conclusion
In summary, we have highlighted three key issues where

decision neuroscience can be informed by robotics: learn-

ing in real environments (i.e. addressing the reality-gap in

neuroscience models), modelling complex disease (mak-

ing predictions when there are multiple risk factors), and

evolutionary modelling (understanding why neural sys-

tems are structured in the way that they are). And we

have highlighted three potentially valuable insights for
www.sciencedirect.com
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robotics that come from decision neuroscience: adopting

multi-controller architectures (to enhance safety and effi-

ciency), rapid/single-shot learning (to enhance perfor-

mance with very limited information exposure), and

metacognition (to enhance robustness in the face of

significant change). Together, they illustrate how an

enhanced dialogue between neuroscience and robotics

could be mutually beneficial.

Indeed, an increasing number of studies are beginning to

cross this boundary. Recent robotics and AI studies, for

instance, draw on the idea of model-based reinforcement

learning from decision neuroscience, showing that an

agent possessing the human’s ability to carry out simula-

tions over predictive models of the environment can

handle various physics-based navigation tasks [67,68].

On the other hand, recent neuroscience studies adopted

recurrent neural networks, a class of models frequently

used for approximate optimal control of robots, to test

theoretical ideas, such as that the structured representa-

tions of spatial information in the hippocampus improve

the efficiency of goal-directed reinforcement learning

[69], and that the midbrain dopamine system promotes

meta-reinforcement learning in the prefrontal cortex [53].

Discovering computational principles of such meta-level

functions in these brain circuits offer great potential for

furthering the design of brain–robot interfaces. It would

not only allow the ability to read out latent states of the

brain, such as a learning strategy or a task goal [70], but

also inform when and how the brain creates a new mental

state [71]. Given that a set of possible choices vary

according to the brain’s latent states, a brain–robot inter-

face equipped with this capability potentially allows a

robot agent to make more precise predictions about user’s

intention.

It is also possible that robotics and neuroscience can

synergistically work above and beyond simple interdisci-

plinary approaches. For instance, most of robot-based

high-throughput screening or neuroscience studies

require completion of the following cycle: hypothesis

development, assay preparation/task design, data collec-

tion/experiment, and evaluation/data analysis. To test a

hypothesis of interest against alternative ones, the task

design requires careful manipulation of task variables

while controlling for potential confounding effects. Rapid

progress in machine learning may provide powerful tools

for finding an optimal task parameter set that allows us to

effectively contrast a main hypothesis with competing

hypotheses [72,73]. One of important directions for future

research concerns AI-based task parameter optimisation,

in which AI being incorporated into robot-based automa-

tion of experiments [74,75].

Finally, a key emerging concept in human-robot interac-

tion is that robots may be better suited to human
www.sciencedirect.com 
interactive environments if they learn, act and behave

in a similar way to humans [76]. This may help in terms of

human’s ability to understand and infer the robots goals

and intentions, enhance empathy towards the robot,

facilitate social decision-making such as cooperation

and joint decision-making, and promote observational

learning. Indeed a key part of the future application of

human-assistive robots for people with cognitive

impairment could conceivably include decision support,

in which a robot infers goals of a human and uses its own

decision-making algorithms to suggest optimal decisions.

Notwithstanding this, there is an inherent logic in having

robots think in the same way as humans as being a key

facet to successful integrative environments, even if this

means robots occasionally displaying suboptimal human-

like traits that emerge naturally from brain-like architec-

tures, such as mild impulsivity and anxiety, in certain

situations.
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