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Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value.
Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its
neurobiological basis. We show that human preferences in an intertemporal choice task are best described by a model that integrates
marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging, we show that activity in the
dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and
the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective
valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behavior. Further-
more, during choice, we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between
value and time. Our data support an integrative architecture for decision making, revealing the neural representation of distinct sub-

components of value that may contribute to impulsivity and decisiveness.

Introduction
Adam Smith (1776) provided an engaging account of the paradox
of value by considering the disparity between the price of water
and diamonds. A subjective theory of value addressed this per-
plexity by positing that the value of a good is not determined by
its maximal utility, rather by the increase in utility obtained by
consuming one extra unit of that good—its marginal utility. A
salient feature of marginal utility is that it diminishes as the quan-
tity of a good increases—hence the utility provided by a fixed
amount of £10 is greater when added to an option worth £50,
than one worth £500. Since water is more plentiful than dia-
monds, its marginal utility is consequently smaller. This “law”
remains integral to economic theory, most notably in relation to
the microeconomic concept of indifference curves and modern
analyses of decision under risk and uncertainty (von Neumann
and Morgenstern, 1947; Kahneman and Tversky, 1979). How-
ever, risk aversion does not provide incontrovertible evidence for
decreasing marginal utility, because this link exists only in theory.
One domain where the effect of diminishing marginal utility
may be observed is in intertemporal choice— choice between
smaller—sooner and larger—later rewards or punishments. Hu-
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mans frequently make important intertemporal decisions, for
example, when deciding to spend or save. Since future rewards
are less valuable than current rewards, their value is discounted in
accordance with their delay—a process known as temporal dis-
counting. Previous research (Mazur, 1987; Green and Myerson,
2004) suggests that humans and animals discount future rewards
in a hyperbolic manner, where the steepness of the hyperbolic
curve is determined by a free parameter, termed the discount
rate. Those with greater discount rates will devalue future
rewards more quickly and have greater preference for smaller—
sooner rewards. However, choice outcome should also be deter-
mined by the rate at which the marginal utility of the chooser
diminishes, since this affects the perceived increase in utility of
the larger, relative to the smaller option (independently of tem-
poral discounting). Consequently, a unified model that inte-
grates temporal discounting and marginal utility should account
better for choice behavior. Such a model might shed light on the
determinants of impulsivity, of which preference in intertempo-
ral choice is a key measure (Evenden, 1999). Moreover, the inte-
gration of subjective valuation schemes relating to magnitude
and delay should be represented neuronally to give a representa-
tion of the overall subjective value of a delayed reward.

Here, we developed a paradigm based on intertemporal choice
and varying monetary rewards, to measure changes in marginal
utility directly. Incorporating a utility function into existing
models of temporal discounting enabled us to manipulate tem-
poral effects and those mediated by marginal utility. We tested
whether this model was better in accounting for subjects’ choices
than standard models. Furthermore, having established the ef-
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fects of decreasing marginal utility on
choice behavior, we could study the
neural implementation of temporal dis-
counting (free from the utility confound),
marginal utility, or both. Specifically, we
asked how these distinct, subjective com-
ponents of value are integrated, both be-
haviorally and neuronally.

Materials and Methods

We used functional magnetic resonance imag-
ing (fMRI) while subjects chose between two
serially presented options of differing magni-
tude (from £1 to £100) and delay (from 1 week
to 1 year) (Fig. 1). These choices were often
smaller—sooner versus larger—later in nature
and presented serially, to separate decision-
making and option valuation processes. Two of
the subjects’ choices were selected at random at
the end of the experiment (one from each ex-
perimental session) and paid for real, by way of
prepaid credit cards with a timed activation
date (see supplemental Methods, available at
www.jneurosci.org as supplemental material).
We used subjects’ choices to assess the extent of
discounting for both magnitude and time. We
assessed a model that combined a utility function (converting magnitude
to utility) with a standard hyperbolic discounting function. In simple
terms, the function for the discounted utility (subjective value) of a de-
layed reward (V) is equal to D X U, where D is a discount factor between
0 and 1, and U is undiscounted utility. D is a function of delay to the
reward, and includes the individual’s discount rate parameter, whereas U
is a function of the magnitude of the reward and includes a subject-
specific parameter determining the concavity (or degree of diminishing
marginal utility) of the utility function (see supplemental Methods, avail-
able at www.jneurosci.org as supplemental material).

Participants. Twenty-four right-handed, healthy volunteers were in-
cluded in the experiment (12 male, 12 female; mean age, 23; range, 19—
28). Subjects were preassessed to exclude those with a previous history of
neurological or psychiatric illness. All subjects gave informed consent,
and the study was approved by the UCL ethics committee.

Procedure and task description. The choice task was as described above
and in Figure 1 (see supplemental Methods, available at www.jneurosci.org
as supplemental material, for further details).

On arrival, subjects were given an instruction sheet to read (see sup-
plemental Appendix 1, available at www.jneurosci.org as supplemental
material), explaining the task and details of the payment. They were also
shown the credit cards and the lottery machine to reassure them that the
payment system was genuine. After a short practice of six trials, they were
taken into the scanner where they performed two sessions of 110 trials each.

Payment was implemented by way of a manual lottery after comple-
tion of all testing. The lottery contained 110 numbered balls, each repre-
senting a trial from the first session of testing. The ball which was selected
corresponded to the rewarded trial for that testing session. The magni-
tude and delay of the option which the subject chose in the selected trial
was determined and awarded using a prepaid credit card. The magnitude
of the option chosen was loaded onto the card and given to the subject.
The activation code on the card was removed and sent by e-mail to the
subject at the delay specified by the chosen option. This lottery was then
repeated to determine a reward for the second session of testing, and a
second card was issued. Both lotteries took place after all testing had been
completed. Thus, the payment each subject received was determined by a
combination of the lottery and the choices that they made—a manipu-
lation that ensured subjects treated all choices as real. The payment sys-
tem was designed so that on average each subject would receive £100. No
other payment was awarded for mere participation in the experiment.
Since only two choices were paid to the subjects, and selected after the
testing was completed, we could be confident that any influence of
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Experimental task. The display outlines the sequence of stimuli in a single trial. Subjects are presented with two
options—a smaller—sooner and a larger—later amount of money (range, £1-100; 1 week to 1 year). Subjects chose the option
which they preferred and received their chosen option for 2 out of the 220 trials, as determined by a lottery and paid using prepaid
credit cards activated at the specified time (see supplemental Methods, available at www.jneurosci.org as supplemental

changing reference points (as a result of increasing wealth) was unlikely
to be significant.

Imaging procedure. Functional imaging was conducted by using a 3
Tesla Siemens Allegra head-only MRI scanner to acquire gradient echo
T2*-weighted echo-planar images (EPIs) with blood oxygenation level-
dependent (BOLD) contrast. We used a sequence designed to optimize
functional sensitivity in the orbitofrontal cortex (OFC) (Deichmann et
al., 2003). This consisted of tilted acquisition in an oblique orientation at
30* to the anterior cingulate—posterior cingulate line, as well as applica-
tion of a preparation pulse with a duration of 1 ms and amplitude of —2
mT/min the slice selection direction. The sequence enabled 36 axial slices
of 3 mm thickness and 3 mm in-plane resolution to be acquired with a
repetition time (TR) of 2.34 s. Subjects were placed in a light head re-
straint within the scanner to limit head movement during acquisition.
Functional imaging data were acquired in two separate 610 volume ses-
sions. A T1-weighted structural image and fieldmaps were also acquired
for each subject after the testing sessions.

Behavioral analysis. We used a maximum likelihood estimation of the
softmax decision rule to assign probabilities to each option of the choice.
This was implemented within the context of our valuation model, to
calculate the best fitting parameter estimates for the discount rate (K)
and utility concavity (r) as well as the likelihood of the model. We re-
peated this procedure for a number of other influential valuation models.
To test for an effect of temporal discounting and concave utility, we
compared subject-specific parameter estimates to zero using one sample
t tests. Model comparison was performed using the Akaike information
criterion (AIC) (see supplemental Methods, available at www.jneurosci.org as
supplemental material, for detailed description of the models and fitting
procedures).

Imaging analysis. Image analysis was performed using SPM5 (www.fil.
ion.ucl.ac.uk/spm). For each session, the first five images were discarded
to account for T1 equilibration effects. The remaining images were re-
aligned to the sixth volume (to correct for head movements), unwarped
using fieldmaps, spatially normalized to the Montreal Neurological In-
stitute (MNI) standard brain template and smoothed spatially with a
three-dimensional Gaussian kernel of 4 mm full-width at half-maximum
(FWHM) (and resampled, resulting in 3 X 3 X 3 mm voxels). Low-
frequency artifacts were removed using a 1/128 Hz high-pass filter and
temporal autocorrelation intrinsic to the fMRI time series was corrected
by prewhitening using an AR(1) process.

Single-subject contrast maps were generated using parametric modu-
lation in the context of the general linear model. We performed three
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analyses, examining variance in regional BOLD response attributable to
different regressors of interest: absolute U, D, and V for all options (anal-
ysis 1); absolute M, U, and D for all options (analysis 2); absolute differ-
encein V, D, and U (AV, AD, and AU) between the two options on each
trial (analysis 3). In these analyses, the interaction term V was calculated
from the mean corrected values of D and U (this was not necessary in the
nonorthogonalized regression analysis). Analysis 1 allowed us to identify
regions implicated in the evaluation and integration of different reward-
related information. Analysis 2 allowed us to identify regions showing re-
sponse to the (diminishing marginal) utility of rewards, as opposed to
their absolute magnitude. Analysis 3 allowed us to identify regions where
activation covaried with the difficulty of each choice. The 4 mm
smoothed images allowed us to perform high-resolution, single-subject
analyses (see supplemental Results, available at www.jneurosci.org as
supplemental material, for examples).

For analysis 1, U, D, and V for each option (two per trial) were calcu-
lated using the canonical parameter estimates (K and r) in the context of
the second model (see supplemental Material, Eq.4, available at www.
jneurosci.org as supplemental material) and convolved with the canon-
ical hemodynamic response function (HRF) at the onset of each option.
Analysis 2 was performed in a similar manner for M, U, and D. We also
looked for subject-by-subject covariation between U in analysis 2 and the
estimated parameter r, but this did not yield significant results at our
threshold. For analysis 3, AV, AD, and AU were convolved with the
canonical HRF at the onset of the choice phase. All onsets were modeled
as stick functions, and all regressors in the same model were detrended
and orthogonalized (in the orders stated above) before analysis by SPM5.
To correct for motion artifacts, the six realignment parameters were
modeled as regressors of no interest in each analysis.

At the second level (group analysis), regions showing significant mod-
ulation by each of the regressors specified at the first level were identified
through random effects analysis of the 8 images from the single-subject
contrast maps. The contrast maps were smoothed before analysis with a
three-dimensional Gaussian kernel of 7 mm FWHM (this achieved an
effective smoothing of 8 mm FWHM at the second level). We included
the betas from the single-subject reaction time analyses (see supplemen-
tal Material, available at www.jneurosci.org as supplemental material) as
covariates in analysis 3. We report results for regions where the peak
voxel-level ¢ value corresponded to p < 0.001 (uncorrected), with mini-
mum cluster size of five. Results which were corrected for multiple com-
parisons (family-wise error corrected p < 0.05) at the whole-brain level
or with small volume corrections are indicated in the supplemental Re-
sults Tables and Figures, available at www.jneurosci.org as supplemental
material. We additionally report uncorrected results but caution that
these should be considered exploratory findings, which await additional
confirmation by further studies. Coordinates were transformed from the
MNI array to the stereotaxic array of Talairach and Tournoux (1988)
(http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach).

To identify regions where modulation by each regressor in each anal-
ysis overlapped (as in analyses 1 and 3), we constructed explicit inclusive
masks using a threshold of p < 0.001 and constrained subsequent anal-
yses using this mask. For example, in analysis 1, to observe regions sig-
nificantly correlating with U, D, and V, we first identified regions where
U modulated responses at p < 0.001 and created a mask from this image.
We then identified regions where D modulated responses within this
mask, at p < 0.001 and created a second mask from this contrast. Finally,
we identified regions where V modulated responses within this second
mask. In analysis 2, a mask was created from regions modulated by
presentation of options at p < 0.001.

The structural T1 images were coregistered to the mean functional EPI
images for each subject and normalized using the parameters derived
from the EPI images. Anatomical localization was performed by overlay-
ing the +-maps on a normalized structural image averaged across subjects
and with reference to the anatomical atlas of Mai et al. (2003).

Results

Model comparison

Maximizing the likelihood of the choices made by the subjects
(on a subject-by-subject basis), under the assumptions of the
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Table 1. Model comparison

Akaike
Model number (Eq.) Sum AIC Delta AIC weight
2, (4)—Hyperbolic discounting of utility 3595 0 1
1, (2)—Hyperbolic discounting of magnitude 3630 35 2.51E-08
4, (6)—Exponential discounting of magnitude 3637 4 7.58E-10
3, (5)—Exponential discounting of utility 3660 65 7.68E-15
6, (8)—Beta delta with magnitude 3685 20 2.86E-20
5, (7)—Beta delta with utility 3709 114 1.76E-25
7—aAs soon as possible 4144 549 6.1E-120

The table displays goodness of fit (AIC) and model comparison results for each of the seven valuation models (see
supplemental Methods, available at www.jneurosci.org as supplemental material). Eq., Equation number for each
model as listed in the supplemental Methods.

model, enabled us to estimate the individual parameters deter-
mining discount rate and utility concavity. These estimates re-
vealed (see supplemental Results, available at www.jneurosci.org
as supplemental material) that subjects discounted the value of
future rewards (null hypothesis of no discounting: p < 0.00025)
and also that they exhibited diminishing marginal utility (null
hypothesis of a linear utility function: p < 0.05). Evidence-based
model comparison revealed that, compared with a number of
other influential valuation models (Table 1; see supplemental
Methods and Results, available at www.jneurosci.org as supple-
mental material), our discounted utility model was the most
likely given the data (Akaike weight = 0.99) and significantly
better at describing the choices than a standard hyperbolic model
which assumes linear utility (difference in AIC = 34.5), as well as
the other models.

fMRI

We next analyzed brain activity acquired, using fMRI, during
actual task performance by constructing parametric regressors to
explore the representation of three key quantities. The first two
quantities were undiscounted utility (which incorporates the
nonlinear utility function but ignores time) and the discount
factor (the proportion by which utility is reduced in relation to an
immediate payoff, i.e., a value between zero and one). The third
quantity was discounted utility—the product of the first two,
which in statistical terms represents an interaction between util-
ity and discounting. These regressors were generated from the
behavioral parameter estimates and orthogonalized with respect
to each other. We used our discounted utility model to create the
regressors (see supplemental Methods, available at www.jneurosci.org
as supplemental material).

Statistical parametric maps (SPMs) (Fig. 2) revealed distinct
patterns of brain activity associated with each component process
aspect of valuation. Undiscounted utility ( U) correlated with ac-
tivity in the striatum, ventral tegmental area (VTA), and anterior
cingulate cortex (ACC), consistent with previous findings impli-
cating these regions in the anticipation and receipt of reward
(Breiter et al., 2001; Knutson et al., 2001; Yacubian et al., 2007).
The discount factor (D) correlated with activity in the striatum,
insula, posterior and pregenual cingulate cortex, ventromedial
orbitofrontal cortex, VTA, and inferior frontal gyrus, consistent
with, and supplementing previous results from, studies of tem-
poral discounting in both animals (Mobini et al., 2002; Cardinal
etal., 2004; Roesch et al., 2007a,b; Kim et al., 2008; Kobayashi and
Schultz, 2008) and humans (McClure et al., 2004; Tanaka et at.,
2004; Kable and Glimcher, 2007).

Our key analysis, testing for an interaction (i.e., discounted
utility, V = DxU orthogonalized with respect to D and U), found
significant correlates in dorsal striatum and pregenual cingulate
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cortex (Fig. 2). Critically, this activation in
the dorsal striatum incorporated the same
anatomical zone that correlated indepen-
dently with both undiscounted utility and
temporal discounting. Second, each of
these colocalized effects cannot be ex-
plained by the other two. This implicates
the dorsal striatum in both encoding and
possible integration of undiscounted util-
ity and temporal discounting to furnish a
discounted utility that may play an impor-
tant role in subsequent choice.

One potential caveat with respect to
these results relates to the orthogonaliza-
tion of the regressors. Because U, D, and V'
have shared variance components, we or-
thogonalized V with respect to D and U.
This orthogonalization means we are as-

signing shared variance to U (and D). This ~ Figure2.
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Regions involved in the subjective valuation and integration of objective reward properties (a parametric analysis).

was motivated by the fact that V is con-
structed from or depends on U and D.
However, to ensure that the U and D re-
gressors were not modeling any variance
attributable to variations in V (or D), we
reversed the orthogonalization order in a
second analysis. Importantly, activity in
the dorsal stratium still correlated with all
three regressors, although the strength of
V- and U-related effects were somewhat
swapped when compared with the first
analysis (V activity in striatum resembling
the striatal pattern seen for U in the first
model). In a further, more conservative
analysis, we removed the orthogonaliza-
tion step entirely (thus removing any
shared variance components) from our
regression model. The results of this
model revealed that responses in the stri-
atum still correlated with unique compo-
nents of U, D, and V (see supplemental
Results, available at www.jneurosci.org as
supplemental material). Thus, these anal-
yses strongly suggest that the striatal re-
sponses have three separable variance
components that can be predicted by vari-

a, Correlates of undiscounted utility ( U) of each option, a concave function of its magnitude. b, Correlates of the discount factor ( D)
of each option, a hyperbolic function of the delay to receipt of the option. ¢, Interaction of U and D affording the (orthogonalized)
discounted utility or value ( /) of the option, used to guide choice. d, Dorsal striatum (MNI coordinates and statistical z score: 15,
3,18,z = 3.26*) significantly correlated with U, D, and V/. These SPMs have been thresholded at p << 0.001 (uncorrected) (for
comprehensive results, see supplemental Results, available at www.jneurosci.org as supplemental material). *Corrected for
multiple comparisons (family-wise error p << 0.05).
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Figure 3.  The neural encoding of marginal utility and its diminishing nature (statistical parametric maps and example of
regressors). a, Activity in the dorsal striatum correlated with the undiscounted utility of rewards ( U) over and above its correlation
with their objective magnitude (; i.e., alinear effect of magnitude). A peak was found in the right dorsal caudate (MNI coordinate
and statistical z score: 19, 15, 13; z = 3.29). U was orthogonalized with respect to M in the regression to isolate the nonlinear or
concave aspects of the predictor variable. b, Example of regressors used in a. Black dots (M) show the subjective value of rewards
ranging from £1to £100 under the assumptions of a linear utility function, whereas red dots indicate the utility (U) of the same
magnitudes, calculated using a nonlinear utility function and a canonical estimate of subjects’ r—the concavity (0.009).

ations that are unique to U, D, and their
interaction V. Another caveat with respect
to the region of overlap concerns a theoretical possibility that
colocalized activations corresponding to all three (mean cor-
rected) regressors, may be consistent with encoding of nonmean
corrected discounted utility (V). Nevertheless, the fact that all
three regressors are encoded in the striatum (separately) is con-
sistent with the hypothesis that integration of distinct compo-
nents is reflected by activity within the striatum.

Existing neurobiological evidence of nonlinear utility is lim-
ited to a previous study (Tobler et al., 2007), which found that
learning-related neural activity in striatum correlated with
subjects’ wealth. However, this evidence is based on a fusion of
learning theory and marginal utility theory and leaves open the
question as to whether decreasing marginal utility can be detected
on a subject-by-subject basis rather than at a population level. To
investigate more directly the representation of basic utility at an
individual level, we assessed whether the neural representation of

utility in the striatum was better correlated with a concave utility
function or simply magnitude. Consequently, we included ac-
tual magnitude (M) as an extra regressor in our original linear
model and orthogonalized the utility regressor (U) with re-
spect to M. Within this model, the representation of utility
(U) still correlated with activity in the dorsal striatum (Fig. 3).
This finding suggests that the dorsal striatum specifically en-
codes the utility of a good over-and-above that which can be
described by its objective value, thereby offering direct neural
evidence for the nonlinearity (concavity) of subjective utility.

An important aspect of our model is that it makes clear pre-
dictions regarding choice difficulty. Under the assumption that
difficult choices—with a small difference in discounted utility
(AV) between two options—take longer, our model predicts
which choices should induce a greater reaction time and more
neuronal activity. Consequently, we tested at a behavioral and
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Figure 4. Choice difficulty: the intertemporal dissonance effect. Regions that correlated
significantly with choice difficulty as measured by closeness in discounted utility between the
options (AV) and also with difficulty as measured by difference in discount factor (and thus
delay) between options (AD). Activity here increases as AV gets smaller and AD increases.
Peakactivations (MNI coordinates and statistical zscores) are ACC (3, 33, 30;2 = 3.64*). Activity
in the ACC also covaried with the degree to which behavior (choice latency) was affected by
difficulty (as measured by AV) (12, 39, 33; z = 3.64) (see supplemental Results, available at
www.jneurosci.org as supplemental material, for regions correlating with Al and AD, sepa-
rately, as well as regions covarying with reaction time parameters). *Corrected for multiple
comparisons (family-wise error p << 0.05).

neural level for these effects. Such an effect was evident from
choice latencies, where reaction times were significantly longer in
cases where AV was small ( p < 0.00005), i.e., a negative correla-
tion was observed. Furthermore, we conjectured that in addition
to differences in discounted utility (AV), greater difficulty would
be incurred by options that were separated more in time. Consis-
tent with such a “dissonance effect,” we found that reaction times
were also slower when the difference in discount factor (AD) was
large (p < 0.05), independent of (i.e., orthogonal to) AV (see
supplemental Methods, available at www.jneurosci.org as sup-
plemental material). We tested for brain regions that correlated
with both difficulty indices (AV and orthogonalized AD) at the
time of choice. This revealed correlates in the anterior cingulate
cortex (Fig. 4), suggesting a distinct role for this region in inter-
temporal choice and response selection. This is important in light
of a previous finding in which ACC lesions in rodents had no
effect on this task (Cardinal et al., 2001). Furthermore, activity in
ACC covaried with the degree to which choice latency was af-
fected by AV, whereby subjects whose latencies were more af-
fected by difficulty also showed greater activity in ACC with
increasing difficulty. Drawing on previous insights on the func-
tion of this region (Botvinick et al., 2004; Cohen et al., 2005;
Kennerley et al., 2006; Botvinick, 2007; Pochon et al., 2008) in
decision making and on anatomical studies of its connectivity
leads us to suggest that it adopts a regulatory or monitoring role
with respect to the integrative function of the dorsal striatum.
However, the impact of this function on actual choice behavior
remains to be determined.

Discussion

In summary, our data provide both direct behavioral and neuro-
biological support for marginal utility theory in the context of a
choice model that incorporates temporal discounting. This is of
particular concern since a neural basis for the concavity of the
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utility function, a key concept in economics, has not previously
been demonstrated. Furthermore, our results suggest that the
dorsal striatum may act as a site of convergence of these two
systems so as to construct the discounted utility that plays an
important role in subsequent choice.

The striatum has been identified in previous studies of tem-
poral discounting in both animals (Cardinal et al., 2001, 2004;
Roesch et al., 2007a; Kobayashi and Schultz, 2008) and humans
(McClure et al., 2004; Tanaka et al., 2004, 2007; Kable and Glim-
cher, 2007; Wittmann et al., 2007; Luhmann et al., 2008; Ballard
and Knutson, 2009) and less directly in marginal utility (Tobler et
al., 2007). In humans, activity has been shown to correlate with
preferences for immediate options (McClure et al., 2004) and for
discounted magnitude across both immediate and delayed op-
tions over both short (Tanaka et al., 2004) and long timescales
(Kable and Glimcher, 2007). However, the exact nature of this
signal has been unclear, including whether it merely reports on
value calculations or their prediction errors, performed else-
where (Tanaka et al., 2004, 2007; Luhmann et al., 2008). For
instance, the well recognized role of this region in reinforcement
learning (Robbins et al., 1989; O’Doherty et al., 2004, Seymour et
al., 2004; Haruno and Kawato, 2006) does not necessarily speak
to a role in constructing value and choice. However, previous
data are consistent with distinct roles in encoding delay (Tanaka
et al., 2007) and marginal utility (Tobler et al., 2007). The data
presented here advance these insights and support a broader and
more sophisticated role for this region than previously thought,
wherein choices are determined by an integration of distinct de-
terminants of value.

The exact nature of the representation of temporal discount-
ing remains unclear (Wittmann and Paulus, 2008). Superficially,
the diminished utility associated with increasing time has strong
parallels to probability discounting and indeed some theoretical
accounts of temporal discounting propose just this: that uncer-
tainty, for instance through unexpected occurrences that might
interfere with reward delivery, accumulates with time (Steven-
son, 1986). However, recent neurophysiological evidence sug-
gests that uncertainty and temporal discount factors may be, at
least in part, distinct (Luhmann et al., 2008). Furthermore, that
the BOLD activity correlates with a single parametric regressor
does not in itself imply that it is driven by a single neural
determinant, since distinct psychological processes (such as
the utility of anticipation or anxiety) (Loewenstein, 1987; Wu,
1999) and neurochemical processes (such as 5HT and dopa-
mine) (Roesch et al., 2007b; Tanaka, 2007) may make inde-
pendent contributions.

From a behavioral and economic perspective, neglecting non-
linear utility has the potential to confound inferences about dis-
counting since any model could over-estimate the discount rate
to account for marginal utility effects (Andersen et al., 2008). A
similar argument could apply to the neurophysiological data.
This has particular relevance for understanding personality char-
acteristics such as impulsivity. The term impulsive is a general
description of a diverse group of behaviors with distinct features
(likely dependent on distinct neural processes), which are en-
compassed by a general theme of behavior in the absence of ad-
equate foresight (Evenden, 1999; Winstanley et al., 2006). These
include motor/behavioral impulsiveness, the inability to with-
hold a prepotent behavioral response, and reflection impulsive-
ness, a failure to slow down (or “hold your horses”) (Frank et al.,
2007) in response to decision—conflict, to properly consider op-
tions. Another feature, choice/temporal impulsiveness, is often
defined as the propensity to choose small short-term gains in
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preference to larger delayed gains (or larger delayed losses in
preference to smaller immediate losses) (Herrnstein, 1981; Mazur,
1987; Logue, 1988; Evenden, 1999; Ainslie, 2001; Cardinal et al.,
2003; Green and Myerson, 2004). Traditionally, the psychologi-
cal basis of impulsive choice has rested on the discount rate
parameter, such that those with a higher rate are described as
impulsive and those with a low rate as self-controlled (Herrn-
stein, 1981; Mazur, 1987; Logue, 1988; Evenden, 1999; Ainslie,
2001; Cardinal et al., 2003; Green and Myerson, 2004 ). However,
the data presented here illustrate that impulsivity and self-control
are also determined by the concavity of an individual’s utility
function and that these two parameters are independent of one
another. Specifically, the more concave the function, the faster
marginal utility diminishes and the more impulsive the individ-
ual. This is because a concave utility function diminishes the
value of the larger reward relative to the smaller reward, making it
less attractive. A corollary of this is that subjects who are more
impulsive (as a result of a more concave utility function) may be
more risk-averse, since the concavity of the utility function is also
a key determinant of choice under uncertainty (von Neumann
and Morgenstern, 1947; Kahneman and Tversky, 1979; Pindyck
and Rubinfeld, 2004 ).

We conclude that impulsivity in choice (temporal impulsive-
ness) should not solely be defined by K. Moreover, K and  in our
view should be kept separate, as there is no theoretical reason why
the discounting of time and scaling of magnitude (two different
features of preferences) should influence each other. Although it
has been suggested that such a correlation may exist (Anderhub et
al., 2001), we did not observe it in our results, and previous at-
tempts to find a correlation by simultaneously administering risk
preference (to estimate r) and intertemporal choice (to estimate
K) tasks have been mixed (Ahlbrecht and Weber, 1997; Anderhub et
al., 2001). In our view, it is perfectly possible that a person with a
high discount rate but a close to linear utility function is as be-
haviorally impulsive as a counterpart with a low discount rate but
a more concave function—although both parameters will corre-
late with impulsiveness, individually. Future studies of impulsive
choice should, therefore, consider these determinants and oth-
ers—including top-down, inhibitory control mechanisms—
when hypothesizing about the underlying cause of a change in
intertemporal choice behavior across experimental conditions.
These considerations have an important bearing on studies of
psychopathologies where impulsive choice is a quintessential
clinical feature, such as drug addiction (Cardinal et al., 2003;
Bickel et al., 2007) and attention-deficit hyperactivity disorder
(Sagvolden and Sergeant, 1998; Winstanley et al., 2006), par-
ticularly since dysfunction of the striatum is implicated in
both conditions.

One caveat relating to the fMRI data is that when comparing
different valuation models we found that the hyperbolic dis-
counting of utility was the best model for describing the behav-
ioral data. However, attributable to constraints in the design of
the study, we were not able to use the fMRI data to make such
inferences regarding the accuracy of the different models. The
regressors used to analyze the imaging data were created only
from the model we proposed, which was also selected by the AIC
analysis; and so we caution that these results may not be indepen-
dent of the model used (e.g., exponential vs hyperbolic). We
anticipate further studies which aim to assess the validity of these
models using fMRI data.

One of the useful aspects of the model is the ability to calculate
utility functions from intertemporal choices. Previous methods
to construct utility functions have mostly used risk preference
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tasks, such as simple gambles. These studies suggest that the av-
erage utility function derived from risk-preference tasks is mag-
nitude to the power of 0.88 (Tversky and Kahneman, 1992). This
value leads to a slightly more concave utility function than that
observed in our task. This discrepancy may have arisen from
natural variance of the population or the range of magnitudes
used in the task to characterize the function (£1-100 in our study
vs a larger hypothetical or smaller real range of amounts, used in
other studies). It is also likely that the realistic nature of our study
(real amounts paid with real delays) may lead to differences from
previous estimates, where, for the most part, hypothetical choices
were made. Finally, further studies should address whether utility
estimates derived from intertemporal choices differ from those
derived from gambles.

Finally, our results bear relevance to a related but distinct
personality trait—that of decisiveness. When people have to
make choices between similarly valued options, decision—conflict
can occur. Decision—conflict often leads to a slowing down of
responses and increase in activity of conflict areas such as the
ACC (Botvinick et al., 2004; Cohen et al., 2005; Kennerley et al.,
2006; Botvinick, 2007; Pochon et al., 2008). Although this phe-
nomenon is relatively well studied in lower-level, perceptual and
motor decision-making tasks, it is less well characterized in
higher-level tasks (Pochon et al., 2008). We show that decision—
conflict occurs in intertemporal choice and that it can be caused
by choosing between similarly valued options but also options
that are far apart in time (independent of difference in value).
Furthermore, we demonstrated that ACC activity in response to
conflict correlated with the degree to which individual subjects
were slowed down by choice difficulty. This suggests that the
psychological trait of decisiveness may be predicted by or relate to
an individual’s degree of ACC activity.
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