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A major puzzle of decision making is how the brain decides which decision system to use at any one time.
In this issue of Neuron, Lee et al. (2014) provide a theoretical, behavioral, and neurobiological account of a
prefrontal reliability-based arbitration system.
As sure as there are many ways to skin

a proverbial cat, there are many ways

to solve most real-life decision-making

problems. That the brain has several

different learning and decision systems

at its disposal is no longer disputed but

has given way to a much trickier question:

how do you decide which decision sys-

tem to use at any one time?

In its simplest instantiation, this ‘‘meta-

decision’’ problem can be thought of

as a choice between a computationally

extravagant ‘‘model-based’’ system that

tries to build a full internal model of the

external world, and a frugal ‘‘model-free’’

system that adopts a ‘‘what usually works

well’’ approach. Given that much in the

world is actually rather mundane and pre-

dictable, this latter system of habits will

easily suffice for the majority of the time

(Dolan and Dayan, 2013). The problem is

knowing when it is sufficient and safe to

rely on it.

In 2005, Daw and colleagues presented

the first specific computational account of

how such arbitration might be controlled:

they suggested that as well as outputting

their preference (i.e., values) of possible

actions, each system might also accom-

pany this with an estimate of the uncer-

tainty in these values (Daw et al., 2005).

This uncertainty signal could provide a

normative basis for arbitration, allowing

optimal weighting of the values outputted

by each system to allow an integrated

decision. The Daw model provides a

good account of the existing data in

animals and humans, but it is not particu-

larly easy to test rigorously. Indeed, only

recently have paradigms been developed

that reliably disambiguate different values

produced by each system, and it is not

trivial to refine these paradigms so that
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they also independently vary the uncer-

tainty in these outputs.

In this issue of Neuron, Lee, Shimojo,

and O’Doherty present a comprehensive

theoretical, behavioral, and neurobiolog-

ical analysis of the arbitration problem

(Lee et al., 2014). Their investigation cen-

ters around three central questions. First,

is there a dynamic, flexible process that

arbitrates the respective contributions?

Second, if so, what is the key signal or

signals that each system outputs to an

arbitration module to allow arbitration

decisions to be computed? And third,

how is such a system implemented in

the brain?

Lee et al. (2014) use a combination of

instruction and task complexity to inde-

pendently manipulate values and uncer-

tainties in model-free and model-based

systems. Specifically, subjects engage in

a two-step decision task in which they

make right/left choices to move first to

an intermediate state and second to an

outcome state that yields some amount

of monetary reward signaled by colored

coins. The task is performed under two

conditions: in the first (‘‘flexible’’) condi-

tion, subjects can cash in coins of any

color: this makes the task relatively easy,

indeed easy enough for a model-free sys-

tem, as simply reinforcing action values

workswell. In the second (‘‘specific’’) con-

dition, only coins of a given color can be

cashed, with the others being worthless.

This favors a model-based system, which

can plan the best action by memory of

the particular color of the coins in each

of the outcome states. To further flexibly

manipulate the uncertainty (noting also

that it is still possible that a model-free

learning system could learn the task

with an expanded representation of the
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initial state), Lee et al. (2014) also manipu-

late the probability that a given action

yields each subsequent state, to be

either high (0.9) or low (0.5). Importantly,

these different state-transition probabili-

ties differentially affect the specific and

flexible conditions and induce a dynamic

variability in uncertainty within a temporal

range detectable with fMRI.

In considering how the balance of con-

trol might shift between systems, Lee

et al. (2014) propose a new model of arbi-

tration (Figure 1), which although similar to

Daw’s uncertainty-based model, has two

important differences. First, to evaluate

the system’s prediction, they used the

reliability, the variance-to-mean ratio of

the probability that the prediction error is

zero at a moment, instead of the variance

per se (uncertainty in Daw et al.) or

the mean of prediction error. Second,

rather than using trial-by-trial reliabilities

to instantaneously determine the relative

contribution of each system, they pro-

pose a dynamical two-state transition

model, in which the reliabilities modulate

the transition rate between choice proba-

bilities of the two systems. This yields a

gradual shift in the reliance on either sys-

tem, as opposed to a knee-jerk depen-

dency. The fact that the habits tend

to emerge with increased training, previ-

ously represented as an exponential

decay (Gläscher et al., 2010), was accom-

modated by a bias on the transition rates

so that model-free control is favored if

the reliabilities are equal. In the behavioral

data, model fitting suggests that subjects’

choices seem to better reflect incorpora-

tion of both these differences.

Neurobiologically, they find that reli-

ability signals relating to both systems

have an overlapping representation in an
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Figure 1. Schematic Diagram of Arbitration
Themodel-based system learns the structure of state space, including transition probabilities and reward,
whereas the model-free system simply learns action values. Each system outputs a set of action values to
an integrator, and a reliability signal relating to these action values to the arbitrator. Stronger reliabilities
shift the arbitration balance (which has a slight bias toward the model-free system) in favor of that system,
which yields control by flexible inhibition of the model-free system.

Neuron

Previews
anterior region of lateral inferior prefrontal

cortex, with this region and a region of

frontopolar cortex correlating best with

the reliability of the more reliable system

at any one time. This suggests that this

region could be involved in subsequent

arbitration computations. Interestingly,

effective connectivity was modulated by

the arbitrator’s output: if the arbitrator

favored the model-based system, there

was increased negative coupling between

the lateral inferior prefrontal cortex and

the putamen (implicated in the model-

free system). This suggests that the reli-

ability-based arbitrator might inhibit

‘‘default’’ model-free system to favor

model-based control rather than control-

ling the two systems symmetrically.

What is appealing about these results

is that they provide a seemingly direct

demonstration of a natural hierarchy in

the control of decision making, with a de-

cision ‘‘metacontroller’’ exerting influence

over ‘‘lower’’ individual decision systems.

This is a self-organizing hierarchy, with

the systems themselves providing the in-

formation that is used by the arbitrator,

so in principle the metacontroller, as the

apical node, does not necessarily require

any additional information—it just dishes

out control in a principled manner. This

makes it the first neurobiological observa-

tion of a complete multisystem decision

process.
In addition to suggesting a new role for

the anterior region of the inferior lateral

prefrontal cortex, the results shed light

on the function of the frontal pole—an

area that seems to subserve some of the

most intriguing but obscure functions in

the human brain. Broadly speaking, the

frontopolar cortex appears to compute

relations among internally maintained

contextual representations (of which reli-

ability may be just one type), to contribute

to the flexible updating of behavior

in dynamic environments. Neuroimaging

studies of decision making have shown

responses associated with nonpreferred

options (Koechlin et al., 1999), lesser-

valued exploratory options (Daw et al.,

2006), and ‘‘next best’’ alternatives (Boor-

man et al., 2009). It has also been shown

that activity seems to track the relative

advantages of options within one control

system, i.e., uncertainties of predictions

from model-free (Badre et al., 2012) and

model-based (Yoshida and Ishii, 2006)

systems. However, the current study is

notable as it is the first to demonstrate

reliability-like signals in multiple learning

systems.

As a result, as Lee et al. (2014) specu-

late, this may allow the frontopolar cortex

to supervise the inhibitory control in the

lateral inferior prefrontal cortex as a

‘‘controller of controllers.’’ However, this

still leaves open the question of adaptive
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control, i.e., whether this region learns to

control (for example, by building more

abstract representations) or merely imple-

ments control. Both inherently noisy sys-

tems and imperfect or partial observability

make the information from environments

uncertain, but the latter type of uncertainty

can be reduced by belief inference—

a posterior probability over possible

options. In Lee et al. (2014)’s task, for

example, the probabilistic state transition

is systems uncertainty, but there is also

a higher state uncertainty regarding the

existence of the distinct uncertainty con-

ditions (0.5 or 0.9, which is not known

to the subjects). Thus, there is the poten-

tial for more complex, hierarchical infer-

ence-based model representation and

that may have its own distinct uncertainty

signal and influence on the control policy.

The complexity of the decision making

means that the space of subtle differ-

ences in the structure of the model-based

system, input functions, arbitration mech-

anism, and output influence is large.

This creates the opportunity for exten-

sive debate on the precise details of

what is being computed in similar tasks,

which can easily become complicated

by the methodological challenges of fitt-

ing multiple similar models and potentially

codependent parameters. Of course, it

is always easy to make the model more

complicated, but this should detract

from the limpidity and fecundity of the

current exposition.

However, there are some extensions

that are likely to be especially interesting.

For example, how do Pavlovian values

exert competitive control (i.e., during

Pavlovian-instrumental interactions)? Is

there a flexible, parametric influence of

the computational ‘‘effort cost’’ associ-

ated model-based processing (which is

fixed in the current model)? It is also worth

noting that there are other potentially inter-

esting additional ways in which model-

based and model-free systems can

interact. First, it is possible that each sys-

temcould takeadvantageof theprediction

errors generated by the other. Second,

when it comes to choice, themodel-based

system might have access to model-free

values when planning (the model-based

systems’ internal representation might

include the model-free system). Third,

accumulated control by the model-free

system might ultimately inhibit not just
, February 5, 2014 ª2014 Elsevier Inc. 469
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planning but also the learning of the

model-based system.

Notwithstanding this, it will be fasci-

nating and illuminating to establish to

what extent these findings will generalize

to other types of task, especially those

that place different demands on internal

representations inherent in the model-

based system. This is important because

almost certainly there are different types

of model-based learning and planning

system: for example, rule- or instruction-

based models (as explored here), model-

based avoidance, partially observable

Markov decision problems (Yoshida and

Ishii, 2006), hierarchical decision-making

problems (Ribas-Fernandes et al., 2011),
470 Neuron 81, February 5, 2014 ª2014 Else
and navigation (Simon and Daw, 2011).

This puts the onus on other groups to

emulate the sophisticated modeling of

behavior and brain illustrated here.
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