
Lee et al., Sci. Robot. 4, eaav2975 (2019)     16 January 2019

S C I E N C E  R O B O T I C S  |  F O C U S

1 of 2

A R T I F I C I A L  I N T E L L I G E N C E

Toward high-performance, memory-efficient,  
and fast reinforcement learning—Lessons from 
decision neuroscience
Jee Hang Lee1,2*, Ben Seymour3,4,5*†, Joel Z. Leibo6, Su Jin An1, Sang Wan Lee1,2,7†

Recent insights from decision neuroscience raise hope for the development of intelligent brain-inspired solutions 
to robot learning in real dynamic environments full of noise and unpredictability.

Recent successes in building agents with super­
human performance have led to reinforce­
ment learning (RL), becoming a dominant 
theoretical framework to understand decision-
making through interaction with the world 
(1). However, recent RL algorithms still have 
major limitations, such as lack of the ability 
to develop goal-directed policies or reliance 
on large amounts of experience to learn (2). 
These limits impede the ability to rapidly 
adapt in dynamic environments where tasks 
or contexts frequently change.

In contrast, humans have a remarkable abil­
ity to rapidly adapt to environmental changes 
with limited experience. Recent findings in 
decision neuroscience suggest that the brain 
uses not only multiple control systems for RL 
but also a flexible metacontrol mechanism 
to select among control options, each differ­
ent trait associated with prediction perform­
ance, cognitive load, and learning speed (3). 
Understanding how the brain implements 
these options could lead to brain-inspired 
RL algorithms that can work in real control 
problems for robots (4). Here, we discuss 
recent findings on human RL that may 
address several key challenges in robotics: 
performance-efficiency-speed trade-offs, con­
flicting demands in multirobot settings, and 
the exploration-exploitation dilemma.

First, accumulating evidence in decision 
neuroscience indicates that humans take 
advantage of two different behavior control 
strategies: (i) stimulus-driven habitual and 
(ii) goal-directed cognitive control (3). Ha­
bitual control is automatic and fast, despite 
being fragile in a volatile environment, and 

is well accounted for by model-free RL, which 
incrementally learns the values of actions 
through trial and error without a model of 
the environment. Conversely, goal-directed 
control can rapidly adapt to changes in the 
environment, but it is cognitively demand­
ing. It guides actions by learning a model of 
the environment and uses this knowledge 
base to quickly adapt to changes in envi­
ronmental structure, such as learning latent 
(hidden) causes within state-action space.

This computational distinction between 
model-based and model-free RL suggests an 
inevitable compromise between them. Model-
free RL is slow to learn but is fast to achieve 
a goal once a policy is learned and automa­
tized. Model-based RL provides more ac­
curate predictions than model-free RL in 
general but is computationally much heavier. 
Each strategy provides a complementary solu­
tion regarding accuracy, speed, and cogni­
tive load, highlighting a trade-off between 
prediction performance and computational 
efficiency.

Second, RL algorithms usually require 
a large amount of experience to adequately 
learn causal relationships in the presence of 
different environmental factors (incremen­
tal learning). Humans, however, learn fast—
often after a single exhibition of an event 
never experienced before (“one-shot learn­
ing”) (5). Recent neuroscience studies (5, 6) 
found that, when interactions with the envi­
ronment are limited, humans have a strong 
tendency to increase their learning rates; 
they strive for quickly making sense of un­
known parts of the environment, even when 

this compromises safety. These results suggest 
that the brain directly implements compu­
tation to find a trade-off between perform­
ance and speed.

Third, accumulating evidence supports 
the notion that the prefrontal cortex imple­
ments metacontrol to flexibly choose between 
different learning strategies, such as between 
model-based and model-free RL (7, 8) and 
between incremental and one-shot learning 
(5). In a new environment, metacontrol ac­
centuates performance by favoring model-
based RL. Because this is computationally 
expensive, the brain resorts to model-free 
RL when it finds little benefit from further 
learning: Either the environment is suffi­
ciently stable to make precise predictions or 
highly unstable such that predictions from 
model-based RL become less reliable than 
those from model-free RL. In other situa­
tions, metacontrol prioritizes speed. When 
the uncertainty in the estimated cause-effect 
relationships is high, the brain tends to tran­
sition to one-shot learning to quickly resolve 
uncertainty in predicting outcomes. How­
ever, when the agent is equally uncertain 
about all possible causal relationships, it re­
sorts to incremental learning to ensure safe 
learning. Together, they suggest that brain-
like metacontrol can deal with performance-
efficiency-speed trade-offs.

Fourth, human RL may account for social 
phenomena that have been important in hu­
man evolution. In human societies where mul­
tiple agents are interacting, there are social 
dilemmas that have partially competitive and 
partially aligned incentives (9). Approaches 
using model-based RL successfully achieve 
cooperation in more complex temporally ex­
tended settings [e.g., (10, 11)]. These models 
often work in two stages: First, there is a 
planning stage where the agent uses its 
model of the game’s rules to simulate a large 
number of games with itself and learns sep­
arate cooperation and defection policies by 
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independently learning toward both selfish 
and cooperative objectives. Then, in the ex­
ecution phase, a tit-for-tat policy is con­
structed and applied using the previously 
learned cooperate and defect policies. Other 
approaches have sought to break down the 
strict separation between planning and exe­
cution stages and instead work in a fully on­
line manner, such as the LOLA (Learning with 
Opponent-Learning Awareness) algorithm 
(12). In addition to assuming perfect knowl­
edge of the game rules, this model also as­
sumes that agents can differentiate through 
one another’s learning process. This allows 
agents to learn to teach because they can iso­
late the effects of their actions on the learn­
ing of others.

Last, conventional RL algorithms tend 
to be optimistic (or overconfident), especial­
ly when sampling from a part of the envi­
ronment they have not sufficiently learned. 
Learning without an estimate of prediction 
performance may lead to suboptimal poli­
cies (local minima problem), especially in 
complex and dynamic environments.

Humans appear to get around this prob­
lem by using metacognition—the ability to 
evaluate one’s own performance to estimate 
a level of confidence and/or uncertainty (13, 14). 
For example, low task difficulty or low envi­
ronmental noise would make the learning 
agent confident, leading to more decisive 
actions, whereas losing confidence would 
lead to a more cautious and defensive strat­
egy (15). Metacognitive learning thus allows 

for rapid adaptation to the context change 
while maintaining robustness against envi­
ronmental noise. Such a strategy has poten­
tial for augmenting robot decision-making 
in several ways—for instance, in resolving 
exploration-exploitation trade-offs by over­
seeing how lack of confidence should drive 
the desire to learn.

In conclusion, the integration of findings 
from human decision neuroscience can offer 
valuable insights into action control systems 
for robots, leading to safer, more capable, 
and more efficient learning. Such an inter­
disciplinary approach should also yield in­
sights for neuroscience, providing a robust 
test base for developing new theories of hu­
man decision computation.
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Brain-inspired solutions to robot learning. Neuroscientific views on various aspects of learning and cognition 
converge and create a new idea called prefrontal metacontrol, which can inspire researchers to design learning 
agents that can address various key challenges in robotics such as performance-efficiency-speed, cooperation-
competition, and exploration-exploitation trade-offs.
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