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Abstract 

 

Losses are inextricably intertwined with gains, making it rather 

puzzling that the bulk of research focuses on the latter rather than 

the former. In this chapter, we review how the basic architecture of 

affective decision-making applies to losses and punishments, noting 

particularly the paradigmatic case of avoidance learning. One key 

facet of aversive processing is a collection of preparatory withdrawal 

responses inspired by predictors of negative outcomes; we consider 

how these may underpin aspects of a number of anomalies of 

decision making such as aggression, altruistic punishment, framing, 

dread, and depressive realism. 

 



1. Introduction 

 

It was the English scholar Jeremy Bentham who first argued that 

the understanding of human economic behaviour might benefit from 

the study of the physiological processes from which it derives 

(Bentham, 1823). Pertinently, he pursued an account of economic 

decision making that balanced the opposing motives of losses and 

gains, in recognition of the fact that most choices involve 

contemplation of comparable measures of each. Furthermore, he 

recognised that the immutable characteristic of the former 

(incarnate as his plethora of ‘pains’ (Bentham, 1817)) is the basic 

devaluing property that drives decisions to reduce or avoid them.  

 

More prosaically, issues of loss are central to many everyday 

economic decisions, such as health, insurance and borrowing; 

further, apparent anomalies of choice such as loss aversion, framing 

effects and regret, all arise in aversive contexts. There is even a 

tight, though confusing, link between aversion and stress and 

psychiatric conditions such as depression. Nevertheless, partly for 

ethical reasons having to do with the undesirability of actually 

relieving human subjects of part of their own wealth in an 

experiment, it has been very hard to study truly aversive learning 

and processing in a human economic context. Fortunately, along 

with a number of inventive attempts along these lines, substantial 

data relevant to these issues have been collected in experimental 

psychology and behavioural neuroscience using other forms of 

aversive outcomes, and this chapter is underpinned by these 

results, along with the much more substantial understanding of 

reward, which is aversion’s evil twin. 

 



Through such sources, the broad outline of the architecture of 

decision-making is slowly emerging. There is ample evidence that a 

number of systems is involved in making, and learning to make, 

predictions about future positive (which, in the psychological 

literature are often called appetitive) and negative (aversive) 

outcomes, and in choosing actions that generally increase the 

former and decrease the latter (Adams and Dickinson, 1981; Daw 

et al., 2005; Dayan, 2008; Dickinson and Balleine, 2002). 

Cooperation among, and competition between, the different 

systems influence the responses of subjects in experiments, 

although the exact interactions are only beginning to become clear. 

 

In this chapter, we first outline the components of this architecture, 

focusing on different systems involved in evaluating outcomes and 

choosing actions. Their impact in the broader field of 

neuroeconomics has historically been most apparent in positive 

cases; we therefore focus on two key asymmetries between loss-

related and reward-related issues. One of these relates directly to 

the anomalies of choice listed above, and arises from the influence 

on normative, reward-maximizing and punishment-minimizing 

choices of innate responses to aversive predictions and outcomes. 

That the mere prediction of an aversive outcome can have an effect 

on behaviour that, paradoxically, increases the chance of attaining 

that outcome, is an Achilles heel of decision-making with 

widespread unfortunate consequences (Breland and Breland, 1961; 

Dayan et al., 2006).  

 

The second asymmetry has to do with learning. In one important 

class of tasks, subjects are penalised for any action they take 

except for one, part icular, choice (selected ahead of time by the 

experimenter). For such tasks, telling subjects that they just 

performed a bad action does not, in general, tell them what they 



could have done instead that would have been better. By contrast, 

telling them that an action was not bad is much more specifically 

useful. The consequence of this asymmetry lies in psychological and 

neural aspects of the interaction between learning associated with 

rewards and punishments. Learning which actions to execute to 

avoid punishments appears to require the involvement of positive 

signals created through mutually opponent interactions between 

separate systems involved in appetitive and aversive predictions 

and outcomes. The positive signal arises in the light of the 

progression from a state in which punishment is expected, to a 

state in which it is not. Although this asymmetry has fewer direct 

consequences for existing economic tasks, for which learning often 

plays a somewhat restricted role, it is important in ecologically more 

natural settings. 

 

We start by describing the architecture of prediction and decision-

making in positive and negative contexts. We then discuss a class of 

so-called Pavlovian influences over choice in negative contexts; and 

finally consider issues to do with learning. Loss aversion itself is 

discussed in detail elsewhere (see the chapter by Fox and Poldrack). 

 

 

 

2. The architecture of affective decision 

making.  

 

The fields of economics, operations research, control theory and 

even ethology share a common theoretical framework for modelling 

how systems of any sort can learn about the environments they 

inhabit, and also can come to make decisions that maximize 

beneficial outcomes and minimize adverse ones (Camerer, 1995; 



Mangel and Clark, 1988; Puterman, 1994; Sutton and Barto, 1998). 

This framework is closely associated with dynamic programming 

(Bertsekas, 1995), and encompasses many different algorithmic 

approaches for acquiring information about an unknown 

environment, including learning from trial and error, and using that 

information to specify controls. It has recently become apparent 

that different structures in the brain instantiate various of these 

approaches, in some cases in a surprisingly direct manner; 

producing a complex, but highly adapted and adaptive overall 

controller (Daw et al., 2005; Dayan, 2008; Dickinson and Balleine, 

2002). 

 

In many cases for experimental and behavioural economics, the 

specification of the problem includes exactly the full costs and 

benefits of each course of action in a stylized tableau (Camerer, 

1995). However, in typical natural cases of decision making, this 

simplifies away at least two issues. First, feedback for a choice is 

usually only available after some time has elapsed, and, potentially, 

also additional choices (as, for instance, in a maze). This problem of 

delayed feedback seems to have played an important role in 

determining the nature of the neural controllers, with forms of 

prediction lying at their heart (Montague et al., 1996; Sutton and 

Barto, 1998). The second main difference between natural and 

economic decision-making is that the latter mostly involves money, 

which only has derived, and not intrinsic, value to the subjects. The 

extent to which proxies such as money, let alone more abstract 

outcomes such as mere points in a computer game, can entrain 

neural decision-making structures that are presumably evolved to 

handle natural rewards (‘reinforcers’) such as food, water, and 

intrinsic threats, is actually quite remarkable. 

 



The essence of the solution to the problem of delayed feedback is 

prediction of the value of being in a particular situation (typically 

called a ‘state’) and/or doing a particular action at that state, in 

terms of the rewards and punishments that can be expected to 

accrue in the future. Different ways of making predictions underlie 

different approaches to control, leading to an overall architecture 

that is complicated. In particular, we have suggested that there is 

evidence for at least four different sorts of predictor or value system 

and four different sorts of controller (Dayan, 2008). However, for 

the present purposes, two predictors and three associated 

controllers are most important.  

 

The predictors (called model-based and model-free, for reasons that 

we discuss below) trade off the complexity of learning for the 

complexity of computation. These predictors are directly associated 

with two of the controllers (which psychologists refer to respectively 

as goal-directed and habitual). The third controller (called 

Pavlovian) uses the model-based and model-free values but emits 

responses that are selected by evolution rather than learning. We 

argue that the Pavlovian controller plays a critical role in creating 

decision-theoretic anomalies (Dayan et al., 2006). 

 

In the rest of this section, we describe these key value systems and 

controllers. We organize the descriptions around the simple rodent 

maze task shown in figure 1a (adapted from Niv et al, 2006). This 

has three choice points (A, B and C); and four possible outcomes 

(cheese, nothing, water, and carrots). When the animal is hungry, 

the cheese is most valuable, i.e., has the highest outcome utility, 

followed by the water and carrots; when thirsty, the water is most 

valuable. However, the cheese can be devalued, either by allowing 

the animal to eat it freely until it chooses to eat it no more (this is 

called sensory-specific satiety, since the value of the cheese is 



specifically lowered), or by injecting the animal with a chemical 

(lithium chloride) after it eats some cheese. The latter treatment 

makes the animal sick, an outcome that induces a form of specific 

food aversion, such that, again, the cheese is no longer valuable. 

Figure 1b shows the utilities of each of the outcomes under the 

three motivational states of hunger, thirst and cheese aversion.  

 

 

2.1 Model-based values; goal-directed control 

 

One obvious way for a subject to make predictions about future 

punishments or rewards is to use a model of the world. This model 

should indicate the probability with which the subject will progress 

from one state to the next, perhaps dependent on what actions it 

takes, and what the likely outcomes are at those states, which 

again may depend on the actions (Sutton and Barto, 1998). Figure 

1c depicts the model of the simple maze task; it is nothing more 

than the tree of locations in the maze, which are the states of the 

world, joined up according to the actions that lead between them. 

Not only does the model specify which outcomes arise for which 

actions, it should also specify the (expected, experienced) utility of 

those outcomes. As shown in the figure, this depends on the 

motivational state of the subject. The information necessary for the 

model can readily be acquired from direct experience in an 

environment, at least provided that the environment changes at 

most relatively slowly.  

 

Given some systematic way of acting at each location or state (e.g., 

choosing to go left or right with probability 0.5), models such as 

that shown in figure 1c admit a conceptually very simple way of 

making predictions about the values of states or locations in the 

maze, namely searching forward in the model, accumulating 



expected values all the while. Unfortunately, computing model-

based values accurately when there are many different possible 

states and actions, places a huge burden on working memory, and 

also on aspects of calculation. The values can therefore only 

possibly be accurate in rather small environments.  

 

Of course, it is not enough to compute the value of a random choice 

of action at a location; rather it is necessary to find the best action. 

Since the model in figure 1c actually specifies the utility 

consequences of the different possible actions, it can also 

straightforwardly be used to perform the dynamic programming 

step of finding the optimal action. This can, in principle, be 

performed either forwards or backwards in the tree. 

 

One critical facet of this model-based method of choosing actions is 

that the decision utilities used to make choices, i.e., the information 

about the expected utilities of the actions, can depend on a 

calculation as to which outcomes will result, and what their 

expected (experienced) utility will  be. Take the case that the model 

includes all the utilities shown in figure 1b. If the subject is trained 

whilst hungry, it will normally turn left at A to get the cheese. 

However, as soon as the cheese has been devalued through pairing 

with illness, the prediction of the utility of going left at A will be 

reduced, and the subject will turn right instead to get the carrots.  

 

In psychological terms, since these values depend on the expected 

outcomes and their modelled utilities, this sort of control is 

considered to be goal-directed (Dickinson and Balleine, 2002) since 

these utilities define the animals’ goals. This sort of outcome-

sensitive control is a close relative of human notions of ‘cognitive’ 

control, in which individuals explicitly consider the outcome of 

actions, and of subsequent actions, and use some form of tree-



search to inform current actions. The brain might support different 

ways of doing this, for instances using propositional, linguistic 

structures, or, by more or less direct analogy with navigation, 

structures associated with spatial processing. It is closely related to 

the classical notion of outcome-expectancy expounded by Tolman 

(Tolman, 1932). Indeed, model-based prediction and control has 

the key characteristic of being highly flexible over the course of 

learning – new information about the environment can be fit into 

the model in exactly the right place to have an appropriate effect.  

 

Further, one might imagine that subjects could acquire higher order 

information about the overall structure of the environments they 

experience that might generalize from one particular task to 

another. One example that has been highly influential in the 

psychological literature is that of controllability – a measure of the 

influence a subject might expect to have over its outcomes. There is 

a range of experiments into what is known as learned helplessness 

(Maier and Seligman, 1976) in which subjects are taught that they 

cannot control some particular aspect of one environment (for 

instance, being unable to influence a shock). They generalize this 

inference to other environments, failing to explore or exploit them 

effectively. There are various possible formalizations of 

controllability as Bayesian prior distributions over characteristics of 

the models (Huys and Dayan, 2008), but more data are necessary 

to pin this issue down completely. 

 

The neural instantiation of the model and associated calculations for 

predictions and action choice is not completely known. However, 

there is evidence for the involvement of several regions of 

prefrontal cortex, including ventromedial prefrontal cortex (related 

to the prelimbic and infralimbic cortex in rats), lateral orbitofrontal 

cortex, and middle frontal gyrus, along with the dorsomedial 



striatum (Balleine and Dickinson, 1998; Carter et al., 2006; Dayan 

and Balleine, 2002; Koechlin et al., 2003; Ursu and Carter, 2005; 

Yin et al., 2006; Yoshida and Ishii, 2006). Most of these 

experiments involve rewards rather than punishments, though, and 

the representation of model-based negative values is not wholly 

clear. 

 

2.2 Model-free or cached values; habitual control 

 

The problem with model-based prediction and control is the 

complex, and thus error-prone, calculations that are necessary to 

compute values. One way round at least some of this complexity is 

to collapse the total anticipated value of future state transitions or 

actions by storing or, to use a word taken from computer science, 

caching, what would be the results of this tree search (Daw et al., 

2005; Sutton and Barto, 1998). In effect, a cached value provides a 

single simple metric, an outcome-independent neural currency, as 

to the overall ut ility of a particular state, or taking a certain action 

at that state.  

 

Figure 1d shows the cached values (called Q-values) of each action 

at each location in the maze, assuming that the subject chooses 

optimally for the state of hunger. Such cached values can be used 

without direct reference to a model of transitions or outcomes; 

hence this form of prediction is often termed model-free. These 

values are represented by a function (the Q function) whose 

argument is the state (here, the location in the maze). 

 

Of course, the cached values in figure 1d are just the same as the 

optimal values produced by model-based evaluation in the case of 

hunger. However, critically, it turns out that these values can be 

learned directly over the course of experience of state transitions 



and utilities, without any reference to a model at all. Ways to do 

this, i.e., ways of implementing asynchronous, sampled, dynamic 

programming, are highlighted elsewhere in this volume under the 

guise of temporal difference methods of reinforcement learning 

(Barto et al., 1990; Sutton and Barto, 1981; Watkins and Dayan, 

1992). Temporal difference learning works by exploiting the key 

property possessed by the cached values in figure 1d, namely 

consistency from one state to the next. For example, since no 

outcome is provided at state A, the value of going left at that state 

is just the same as the value of the state (B) consequent on going 

left there; the value of going right is the same as the value of the 

state (C) that arises for going right. The discrepancy (if any) 

between these successive value estimates is exactly the basis of the 

temporal difference learning rule. In this way, sequential estimates 

of values effectively transfer between adjacent states, obviating the 

need to wait for actual outcomes themselves.  

 

Perhaps surprisingly, it turns out that temporal difference 

algorithms are not just distant abstractions over baffling neural 

complexities. Rather, at least in the case of positive outcomes, 

there is substantial evidence (also reviewed elsewhere in the 

volume) that the moment-by-moment (phasic) activity of cells that 

project the neuromodulator dopamine to the striatum matches 

closely the key prediction error term in temporal difference learning, 

providing a signal that is ideally suited for manipulating predictions 

appropriately (Montague et al., 1996; Nakahara et al., 2004; Satoh 

et al., 2003; Schultz et al., 1997). Unfortunately, the case of 

aversive outcomes is less well understood. fMRI studies suggest 

that punishments lead to prediction errors with rather similar 

properties to those for rewards (Jensen et al., 2006; Seymour et 

al., 2004), although electrophysiological evidence from animals is 

thinner on the ground (Belova et al., 2007). 



 

Most importantly for model-free predictions is that the brain 

appears not to use the obvious representation in which rewards 

(and positive prediction errors) are coded by greater-than-average 

neural activity in a neural population, and losses (and negative 

prediction errors) by less-than-average neural activity in the same 

population. Rather, as in many other cases, it seems to use two 

systems  that oppose each other  (Dickinson and Dearing, 1979; 

Grossberg, 1984; Konorski, 1967; Seymour et al., 2005; Seymour 

et al., 2007a; Solomon and Corbit, 1974). In this arrangement, 

positive outcomes can inspire responses from the negative system 

when they are unexpectedly omitted, or when sequences of them 

cease. Further, stimuli which predict the absence of rewards (called 

appetitive inhibitors), and stimuli which predict the presence of 

punishments or loss (aversive excitors) are treated in a formally 

similar manner. For example, in terms of value representations, 

omission of food is intrinsically similar to painful shocks. This is 

demonstrable in various psychological paradigms (Dickinson and 

Dearing, 1979). Conversely, there is a natural similarity between 

appetitive excitors and aversive inhibitors. 

 

The neural realization of the system associated with negative, 

model-free values that is opponent to dopamine is not completely 

resolved. One class of theoretical models hints at the involvement 

of a different neuromodulator called 5-Hydroxytryptamine (5-HT or 

serotonin), as a more or less direct opponent (Daw et al., 2002). 

However, direct evidence for this possibility is scant, there are 

competing theories for the role of this neuromodulator, and the 

fMRI studies, with their poor spatial resolution and the uncertainties 

about exactly what aspects of neural activity they capture in 

structures such as the striatum (Jensen et al., 2003; Jensen et al., 



2006; Seymour et al., 2005; Seymour et al., 2007a), leave us 

without a completely unified picture.  

 

In fact, until recently, the striatum had been considered to be 

reward-specific in economic studies in humans. However, the 

findings above and others (Seymour et al., 2004, Delgado and 

colleagues, forthcoming), along with ample animal studies (Horvitz, 

2000; Ikemoto and Panksepp, 1999; Schoenbaum and Setlow, 

2003; Setlow et al., 2003; Wilson and Bowman, 2005) suggest that 

the striatum is involved in both appetitive and aversive processing, 

and indeed may be a critical point in the brain where these 

opposing motivational streams are integrated. Slightly clearer is the 

representation of the cached aversive values themselves, which 

evidently involves the amygdala and anterior insula cortex (Paton et 

al., 2006; Seymour et al., 2004). 

 

The clear advantage of that model-free, cached, values have over 

model-based values is that they are represented directly, and do 

not need to be computed by a process of tree-based evaluation  

that imposes a heavy burden on working memory, and is likely to 

be inaccurate in even moderately complex domains. However, 

attending this computational benefit is statistical inefficiency over 

learning, and inflexibility in the face of change. 

 

First, the drive underlying temporal difference learning is 

discrepancy between the predictions made at successive states. 

However, early in learning, the predictions at all states are wildly 

inaccurate, and therefore the discrepancies, and thus the temporal 

difference prediction error, are of little use. Thus model-free 

learning is statistically inefficient in the way it employs experience. 

To put the point another way, temporal difference learning involves 

bootstrapping (i.e., using one estimate to improve another one), a 



procedure which is far from optimal in its use of samples from the 

environment.  

 

The second problem with model-free methods is inflexibility. As we 

noted, cached values such as those shown in figure 1d are just 

numbers, divorced from the outcomes that underlie them, or the 

statistics of the transitions in the environment. This is why caching 

is computationally efficient. However, if the motivational state of 

the subject changes (for instance if the cheese is poisoned, as in 

the rightmost column of figure 1b), then the cached values will not 

change without further, statistically expensive, learning. By 

contrast, the model-based values, which are based on direct 

evaluation in the tree of outcomes, can change directly. 

 

In figure 1d, the model-free values are predictions of the long-run 

utilities of particular actions at each location. They can thus be 

directly used as decision utilities, to choose between the possible 

actions at a location. This leads to a model-free controller, one that 

makes decisions without reference to a model of the environment. 

We pointed out above that the cached values do not change with 

the motivational state of the subjects without further learning, and 

so the model-free decisions will not change either. In psychological 

terms, this is exactly the characteristic of habits (Dickinson and 

Balleine, 2002) and so this controller is deemed habitual (compared 

with the goal-directed control associated with the model-based 

value system).  

 

From a neural perspective, there is evidence for the involvement of 

the dorsolateral striatum in representing the values of taking 

actions at states (Yin et al., 2006), and indeed in habitual control. 

In the appetitive case, again, dopaminergic projections from the 

substantia nigra pars compacta to this region of the striatum are 



believed to play a central role in learning (Montague et al., 1996; 

Schultz et al., 1997). The habits themselves may be represented or 

stored in cortico-thalamic loops (Yin and Knowlton, 2006). 

 

The habitual controller defined above involves the competition 

between different actions depending on values (or other quantities 

depending on the values) that are the output of a function of the 

state (the Q function in figure 1d). An even more primitive form of 

habitual controller would use a function to parameterize the 

mapping from state to action directly, without going through the 

intermediate value of a range of actions (Barto et al, 1983). 

Psychologists would consider this to be a stimulus (i.e., state) – 

response (i.e., action) mapping. It is also model-free, and 

insensitive to motivational changes, and thus hard to distinguish 

behaviourally from the Q-value-dependent, model-free controller 

described above. There are intriguing reports of just such a 

controller in even more dorsolateral striatal regions (Everitt and 

Robbins, 2005). 

 

The existence of multiple controllers (goal-directed and habitual) 

gives rise to a new choice problem, that of choosing between them. 

One view is that they compete for the control of behaviour 

according to their relative uncertainties (Daw et al., 2005). Model-

based values are favoured early in the course of learning, because 

of their greater statistical efficiency. However, model-based values 

are disdained once sufficient samples have accumulated, because 

the computational demands of calculating them inevitably lead to 

extra noise. 

 

Most work distinguishing habitual and goal-directed control has 

involved appetitive outcomes; we discuss some subtleties of 

aversive habitual control in section 4. 



 

 

2.3  Pavlovian control.  

 

Model-based and model-free controllers can, in principle, learn 

arbitrary actions to optimize their behaviour, at least those actions 

that can be expressed and explored. Indeed, these are often 

referred to as instrumental controllers, since their choices are 

learned to be instrumental for the delivery of desired outcomes. 

Although this flexibility is very powerful, it comes with an attendant 

cost of learning. Evolution appears to have endowed everything 

from the simplest organisms to us with powerful, pre-specified, but 

inflexible alternatives (Dickinson, 1980; Konorski, 1967; 

Mackintosh, 1983). These responses are called Pavlovian, after the 

famous Russian physiologist and psychologist Pavlov. 

 

Immediately available rewards such as food or water, and 

immediate threats, such as pain or predators (collectively called 

unconditioned stimuli), elicit a range of apparently unlearnt, 

typically-appropriate, so-called consummatory, responses. For 

appetitive outcomes, these are relatively simple, although they may 

reflect certain specific attributes of the outcome, for instance, 

differing for solid and liquid outcomes. The consummatory 

responses associated with aversive outcomes appears to be more 

sophisticated than those for rewards, including increased heart rate 

and sweating during acute pain, fighting in the midst of a contest, 

and leg flexion in the face of foot-shock. The choice between the 

whole range of defensive and aggressive responses depends rather 

precisely on the nature of the outcome, the context, and particularly 

the effective (`defensive’) distance of the threat (Blanchard and 

Blanchard, 1990). These responses are seemingly under the control 

of a brainstem structure called the periaqueductal grey (PAG), 



which has a rich, topographically organised architecture (Fanselow, 

1994; Fendt and Fanselow, 1999; Graeff, 2004; Mobbs et al., 

2007). 

 

However, and more relevantly for us, predictions associated with 

these appetitive or aversive outcomes also elicit an often somewhat 

different set of so-called preparatory responses. These are 

automatically tied to the predictions, independent of whether they 

are actually appropriate responses in a given circumstance. They 

thus provide an additional route by which the predictive 

mechanisms discussed in the previous subsections can generate 

behaviour.  

 

Such preparatory responses are also varied. For instance, in rats, 

anticipation of a shock causes attempted escape if the cue 

underlying the anticipation is localised at a particular point in the 

environment (e.g., a light LED), but freezing if it is more general. 

Such anticipation can also lead to fighting in the presence of 

another male, and copulation in the presence of a female (Sachs 

and Barfield, 1974; Ulrich and Azrin, 1962). However, there are also 

preparatory responses that reflect the general positive or negative 

valence of the predicted outcome, and elicit non-specific responses 

such as approach or withdrawal. We suggest in the next section that 

it is these general preparatory responses, arising largely from 

predictions of financial gain and loss, that are associated with 

significant behavioural anomalies in human economic choices.  

 

The neural realization of Pavlovian responses has been well studied 

(LeDoux, 2000; Maren and Quirk, 2004). As mentioned above, 

aversive value predictions depend critically on the amygdala 

(Balleine and Killcross, 2006; Cardinal et al., 2002). The amygdala 

is a complex and incompletely understood structure with many sub-



parts. However, it seems that one sub-area, called the central 

nucleus, is predominantly involved in directing non-specific 

preparatory responses. These include arousal and autonomic 

responses, and also approach/withdrawal, achieved through its 

extensive connections to brainstem nuclei and one part of the 

nucleus accumbens (called the core). Another sub-area, called the 

basolateral complex, is predominantly involved in much more 

specific responses, mediated downstream through connections to 

regions such as the hypothalamus and periaqueductal grey and a 

separate part of the nucleus accumbens (called the shell).  

 

 

3. Pavlovian influences over instrumental 

behaviour.  

 

The responses of the Pavlovian controller are determined by 

evolutionary (phylogenetic) considerations rather than 

(ontogenetic) aspects of the contingent development or learning of 

an individual. These responses directly interact with instrumental 

choices arising from goal-directed and habitual controllers. This 

interaction has been studied in a wealth of animal paradigms, and 

can be helpful, neutral or harmful according to circumstance. 

Although there has been less careful or analytical study of it in 

humans, we have argued that it can be interpreted as underpinning 

a wealth of behavioural aberrations (Dayan et al., 2006). 

 

Crudely, predictions of future appetitive outcomes lead to 

engagement and approach; predictions of future aversive outcomes 

lead to disengagement and withdrawal. For instance, consider the 

phenomenon of Pavlovian-instrumental transfer (PIT) (Dickinson 

and Balleine, 2002; Estes, 1948; Lovibond, 1983). In this, the 



speed, rate, alacrity or, more generally, vigour with which subjects 

perform an instrumental response for a particular positive outcome 

is influenced by the mere presentation of stimuli that are associated 

in a Pavlovian manner with either appetitive or aversive outcomes. 

In our terms, the stimuli signal states; the important aspect of PIT 

is that the predictive association of the Pavlovian stimulus occurs 

separately from that of the instrumental context. 

 

Vigour is boosted the most by stimuli predicting an appetitive 

Pavlovian outcome that is exactly the same as the outcome of the 

instrumental behaviour. This so-called specific PIT depends (at least 

in rats) on the integrity of the basolateral amygdala and nucleus 

accumbens shell (Cardinal et al., 2002; Corbit et al., 2001; Corbit 

and Balleine, 2005). However, vigour is also boosted by stimuli 

predicting motivationally relevant appetitive outcomes (such as 

water, for a thirsty subject) that are different from the instrumental 

outcome. This is called general PIT, and may be seen as a general, 

non-selective, preparatory appetitive phenomenon. In rats, general 

PIT depends on the integrity of the central amygdala and nucleus 

accumbens core (Cardinal et al., 2002; Corbit et al., 2001; Corbit 

and Balleine, 2005), in keeping with the description above about the 

neural realization of Pavlovian conditioning. 

 

Finally, stimuli predicting aversive Pavlovian outcomes can actually 

suppress appetitive instrumental responding, and lead to 

extraneous actions such as withdrawal. This is normally called 

conditioned suppression (Estes and Skinner, 1941), rather than 

aversive PIT, which would perhaps be the more natural term. 

However, it is a ubiquitous and powerful phenomenon that is in fact 

often used as a sensitive measure of the strengths of aversive 

Pavlovian predictors.  

 



Most critically, choice, as well as vigour, is affected by these 

Pavlovian predictions. This is seen very clearly in a slightly complex 

paradigm called negative automaintenance (Williams and Williams, 

1969). In one example of negative automaintenance, pigeons are 

shown the predictive association between the illumination of a key 

and the delivery of food. The Pavlovian predict ion associated with 

the lighting of the key automatically elicits a peck response on the 

key, as a form of preparatory approach and engagement In fact, 

this part of the procedure is one of the standard forms of Pavlovian 

conditioning, which is called autoshaping because of the 

automaticity of the pecking (Brown and Jenkins, 1968). The 

experimenter then arranges what is called an omission schedule, so 

termed because on any trial in which the pigeon pecks the key 

when illuminated, no food will be provided. In this case, there is a 

battle between the Pavlovian response of pecking and the 

instrumental need to withhold. Pigeons cannot help themselves but 

peck to some degree, showing the critical, and indeed in this case, 

deleterious, impact of the Pavlovian prediction.  

 

Although it has been suggested that Pavlovian responses interfere 

comparatively more with instrumental habits than goal-directed 

actions, the factorial PIT-based interactions between model-based 

and model-free Pavlovian predictions and model-based and model-

free instrumental actions have not been systematically studied.  

 

There appear to be fewer aversive examples of phenomena like 

negative auto-maintenance, which is somewhat surprising given the 

robustness of Pavlovian aversive responses in general. Where they 

can be shown to exist, they yield self-punitive behaviour. In one 

putative example, squirrel monkeys were punished, by way of an 

electric shock, for pulling on a restraining leash (Morse et al., 

1967). The (instrumentally) optimal action in such a circumstance is 



to stop pulling, however one Pavlovian response to shock in the 

time leading up to its expected delivery is to try and escape by 

pulling. As expected from Pavlovian misbehaviour, the monkeys did 

in fact pull on the leash more rather than less. A similar example is 

seen in Siamese fighting fish, who can be trained to swim through a 

hoop and perform an aggressive display. If an experimenter then 

tries to inhibit this display by an aversive shock, the behaviour is 

paradoxically augmented (Melvin and Anson, 1969). This is most 

likely since the aggressive display is part of the innate repertoire of 

defensive responses, which turns out to be extremely difficult to 

overcome. This is a form of self-punitive behaviour. 

 

What then are the neuroeconomic consequences of these Pavlovian 

effects? After a methodological note, we briefly consider four: 

impulsivity, framing, depressive realism, and dread. Note that these 

are all complex and rich phenomena; we only focus on the subset of 

issues that Pavlovian control may explain. This may seem like the 

same sort of smorgasboard of issues to which other broad 

explanatory frameworks such as hyperbolic discounting have been 

turned; rather, we argue that it is critical to understand the breadth 

of phenomena associated with something as basic as Pavlovian 

conditioning, given its overwhelming evidentiary basis in psychology 

and neuroscience. 

 

3.1 Methodology. 

 

We must first raise a couple of methodological points about the 

relationship between economic and psychological paradigms. In 

experimental and behavioural economics, decisions are often 

probed in relation to options with stated parameters, that is, the 

magnitudes, risks and uncertainties of various options are given 

directly. These are likely to exert their effects mostly through 



model-based predictions (and goal-directed control). By contrast, in 

experimental psychology, the parameters of options are typically 

learned through trial and error. Thus, representations of value and 

risk are experience-based rather than propositional, and can have 

an impact through model-free as well as model-based control. Of 

course, experience-based representations are imperative in animal 

experiments, and have also been highly successful in deconstructing 

the components of aversive (and appetitive) behaviour. However, 

any complete account of aversive behaviour needs to integrate 

both, since humans are presented with both types of situation: one 

shot decisions such as those regarding pensions and life insurance; 

and repeated decisions, such as those regarding what painkiller to 

take or which foods to buy. 

 

A further difference in methodologies relates to type of aversive 

events used. Neuroscientists have often used pain, for instance in 

the form of an electric shock to hand or paw. The advantage of this 

is it is an immediately and relatively instantaneously consumed 

commodity. Furthermore, it is both potent and ecologically valid, in 

the sense that it is the sort of stimulus with which aversive systems 

evolved to deal. We should therefore say a word about the neural 

processing of pain itself.  

 

Physical pain is subserved by a sophisticated system of specialised 

neural pathways signalling information about actual or imminent 

tissue damage to many areas of the spinal cord and brain (Craig, 

2002; Fields, 2004; Julius and Basbaum, 2001). This results not 

just in the set of characteristic, involuntary, defensive responses 

described above, but also a perceptual representation of negative 

hedonic quality.  

 



In the brain, the basic representation of aversive innate value 

implicates brainstem and midbrain structures, including the 

periaqueductal grey, parabrachial nucleus, and thalamus (Lumb, 

2002). Cortical structures such as insula (particularly anterior 

regions), lateral orbitofrontal and mid-anterior insula cortices are 

more directly associated with refined aversive representations, 

including conscious negative hedonic experience (Craig, 2002). 

These correlate more closely with the subjective experience of 

unpleasantness, which in humans, often accompanies innate 

aversive outcomes. In fact, the feeling associated with loss dictates 

the way these systems are often described in traditional 

psychological accounts (Price, 1999). This can, however, be 

approached more formally by considering ‘feeling’ as a process of 

hedonic inference. As with many less motivationally-laden sensory 

systems, afferent information is rarely perfect, and a statistically 

informed approach is to integrate afferent input with either 

concomitant information from other modalities (multi-sensory 

integration), or prior knowledge of events (expectation) (Seymour, 

Daw and Dayan, forthcoming). 

 

By contrast with these rich phenomena associated with actual 

threats, economists have, naturally, tended to use financial losses. 

Various of the other chapters capture aspects of the psychological 

and neural richness of money as a stimulus; for simplicity, we adopt 

the straightforward view of it as a conditioned reinforcer, that is, a 

stimulus that has undergone (extremely extensive) Pavlovian 

training to be associated with many different sorts of future reward. 

In these terms, losing money is like taking away a conditioned 

reinforcer; an outcome that is indeed known to be aversive.  

 

One complicating issue is the slightly unclear relationship between 

the affective values of states and those associated with state 



changes (Kahneman and Tversky, 2000). To take a concrete 

example – take the state of hunger. On one hand, this would seem 

to be clearly an aversive state – it poses a threat to homeostasis. 

On the other, the affective worth of the same morsel of food is 

greater when hungry than when sated, and so, for instance, the 

average long-run experienced utility may actually be higher (Niv et 

al., 2006). Is the apparently masochistic act of starving yourself 

actually utility maximizing in that you enjoy food in the future 

sufficiently more? In general, teasing apart the contribution to 

utility of the actual outcome and the motivational state within which 

it is evaluated is hard. 

 

The answer to the masochism question is not yet quite clear. 

However, it does pertain to one of the other value systems that we 

have not yet discussed. Most economic decision-making tasks are 

one-shot or phasic. By comparison, many psychological paradigms 

for animals are on-going or continuous. For these, it often makes 

sense to predict and maximize the long-run average rate of rewards 

rather than, for instance, the more conventional long-run sum of 

exponentially-discounted rewards. In this case, this average rate of 

reward has a status as something like an opportunity cost for time. 

Niv and colleagues (2007) noted this, and studied a framework in 

which subjects were free to choose not only which actions to do, but 

also how fast to do them. Under the reasonable assumption that 

acting quickly is expensive, it turns out that the optimal speed or 

vigour of responding is determined by the average rate of reward. 

Arguing partly on the basis of the data on the control of vigour from 

the Pavlovian-instrumental transfer paradigms we discussed above, 

they suggested that the long-run, tonic, level of dopamine or 

dopaminergic activity should report this average reward. This is the 

additional value system. However, vigour is also important in cases 

in which signalled punishments or aversion can be avoided through 



active actions. Tonic dopamine may therefore represent the sum of 

average rewards and avoidable punishments; bar the expectation of 

a long-run absence of food, hunger is exactly an example of this 

sort of case. Whether the tonic aversiveness of hunger is also 

represented by the tonic activity of another system (for instance, 

some subset of 5-HT cells) is not clear. 

 

For the present, we will just consider phasic aversive outcomes, 

such as shocks, or immediate financial losses, together with 

predictions of these. Neurobiological evidence is starting to accrue 

that confirm that the underlying motivational processes in financial 

loss share strong similarities with that associated with physical pain 

(Delgado et al., 2005; Knutson et al., 2007; Seymour et al., 

2007a). For example, Knutson and colleagues have suggested that 

financial amounts associated with payments in shopping 

transactions are correlated with activity in and around insula cortex 

(Knutson et al., 2007), which has also been shown to correlate with 

expected value of pain (Seymour et al., 2004). We have shown 

activation to prediction errors for financial loss in striatum, in a 

similar manner to those seen in studies of aversive conditioning for 

painful shocks (Seymour et al., 2007a). Delgado and colleagues 

(forthcoming) have recently shown directly the common striatal 

aversive processing for pain and financial loss, by engaging subjects 

in a task that involves both.  

 

 

3.2 Impulsivity and altruistic punishment.   

 

Impulsivity covers a broad range of phenomena. Classically, it 

features engagement in actions whose immediate benefits are less 

than those of longer term pay-offs that would accrue if the subjects 

could be patient (Cardinal et al., 2004). That is, subjects exhibit 



temporal short-sightedness. Impulsivity is best described in the 

appetitive domain, but similar notions may apply in aversive 

domains too. In the appetitive case, we have argued that the effect 

of a Pavlovian approach response associated with a proximally 

available beneficial outcome can be to boost early, and thus 

impulsive, responding at the expense of what would be favoured by 

goal-directed or habitual instrumental systems (Dayan et al., 2006). 

Treating this form of impulsivity in Pavlovian terms amounts to a 

subtly different explanation of the behaviour from accounts 

appealing to (or data fitting with) hyperbolic discounting or indeed 

ideas about differences between (model-based) rational and 

(model-free or perhaps neuromodulator-based) emotional cognition, 

which conventionally ignore the normative intent of model-free 

control. 

 

In the aversive case, one example of apparent impulsiveness is 

altruistic punishment, in which subjects punish others (typically 

free-riders who fail to cooperate in various forms of group 

interactions, but nevertheless take advantage of the group effort) at 

a pure cost to themselves (i.e., with negative immediate benefit), 

without any prospect of a direct return on this investment of effort 

or risk (i.e., with no long term pay-off at all). Although the nature of 

the actions which subserve altruistic punishment remain unclear 

(Seymour et al., 2007b), there is good evidence that humans 

readily engage in such actions (Fehr and Gachter, 2002; Yamagishi, 

1986), (see chapter by Fehr in this volume). 

 

Certainly, some aspects of apparent altruism can be explained by 

reputation formation (a form of indirect reciprocity) and tit-for-tat 

(a form of direct reciprocity). These can be captured by model-

based and even model-free instrumental mechanisms. The 

argument that altruistic punishment is partly a Pavlovian anomaly is 



that (a) punishment is a form of aggression, whose innate roots we 

explored above, and that (b) in highly social species such as 

humans, there is an evolutionary imperative to prevent exploitation 

by free-riders that is satisfied by making non-cooperation 

expensive. First, innate aggression is evidently a potentially life 

saving mechanism of defence in the face of predators, and in 

within-species contests, can be important for protecting food, 

territory and mating partners (Clutton-Brock and Parker, 1995). 

Second, in humans, and possibly some other primate species, 

aggressive responses can also serve to promote cooperation, since 

they provide a negative incentive for members of a group to exploit 

each other, and protect various forms of reciprocity (Boyd and 

Richerson, 1992; De Waal, 1998; Stevens, 2004). Thus innate 

responses to perceived unfairness may have evolved on the basis of 

punishment in these sorts of non-altruistic circumstances, such as 

in groups or societies of small enough size such that individuals 

(and certainly their kin) would be likely to interact repeatedly with 

offenders, rendering the punishment non-altruistic (ie. ‘selfish’). 

However, once established as an innate response, punishing non-

cooperators could have become blind to its proximal consequences 

for the individual (like other Pavlovian responses), thus appearing 

impulsive. 

 

There is also the alternative possibility that altruistic punishment 

arises from the structural inefficiency of instrumental control 

associated with habits, rather than the interference of Pavlovian 

imperatives over instrumental ones. Crudely, the idea is that 

choosing precisely whom to punish in a circumstance requires the 

detailed calculations of the consequences of punishment and 

likelihood of future interactions that only the goal-directed system 

could entertain. However, the habit system can engage in 

instrumental punishment in reciprocal cases and may therefore gain 



control over all similar such conditions, as discussed above. Its 

inability to calculate in detail the consequences of its output can 

then lead it to punish ‘inappropriately’ in altruistic situations. This 

type of ‘error’ resembles that seen in devaluation experiments, 

when habitually trained animals fail to reduce responding to 

outcomes that have been separately paired with punishment.  

 

 

3.3 Framing effects. 

 

Framing effects are a rather well-studied peculiarity of human (and 

non-human; Santos and Chen, this volume) choice in which the 

decision between options is influenced by subtle features of the way 

in which those options are presented. Typically, the language used 

to describe an option is manipulated in a valance related manner, 

whilst the expected value remains unchanged.  

 

The so-called ‘Asian disease dilemma’ is a popular example. In this, 

subjects are asked to choose between two options relating to the 

management plan of an epidemic, one of which contains risk, and 

the other not (Tversky and Kahneman, 1981). The risky option is 

fixed, such as ‘Option A has 2/3 chance of curing all 600 affected 

people’, but the non-risky option is presented in either a positive or 

negative frame, as either ‘With Option B, 200 people will be saved ’ 

or ‘With Option B, 400 people will die’. Subjects tend to choose the 

risky option when the sure option is presented in terms of people 

dying, and the sure option when presented in terms of the numbers 

who will be saved.  

 

Similarly, De Martino et al (2006) conducted a study involving 

loss/gain framing of non-risky, alongside risky, financial options, 

matched for expected value. Subjects showed a risk preference 



reversal from risk aversion to risk seeking when the choice was 

switched to a loss frame. This change in behaviour was positively 

correlated with amygdala activity.  

 

Given the role of the amygdala in Pavlovian-instrumental transfer, 

and thus the untoward influence of predictions on instrumental 

actions (Corbit and Balleine, 2005), results such as this are 

consistent with a Pavlovian component to framing. That is, an 

option that is presented as involving sure deaths will automatically 

engage a Pavlovian aversive withdrawal response decreasing its 

propensity to be chosen, that is absent for the option involving sure 

survival. The latter might generate an appetitive approach response 

instead. As we have seen above, model-based evaluation 

mechanisms, which could compute the equality between the 

options, are not the only source of predictions; model-free 

mechanisms, which lack such computational power, also exert their 

influence, in this case in just the direction shown. Indeed one can 

look at the classic trolley moral dilemmas (Thomson, 1986) in a 

similar light. Even if subjects didn’t have any choice, but just had to 

execute an action to register a single option, we would predict that 

the same Pavlovian effect would make their reaction times slower, 

an effect seen in other experiments (Shidara et al., 2005; Sugase-

Miyamoto and Richmond, 2005).   

 

 

3.4 Depressive realism. 

 

In comparisons between healthy volunteers and patients with 

depression, a (not completely uncontroversial) finding is that the 

volunteers are unduly optimistic about the appetitive value of, and 

the degree of control they exert over, artificial, experimentally-

created environments. By contrast, the depressed subjects make 



more accurate assessments, and so are more realistic. This 

phenomenon is called depressive realism (Abramson et al., 1979). 

Further, by comparison with control subjects, depressed patients 

ruminate on negative outcomes. 

 

It has been suggested that Pavlovian withdrawal associated with 

predictions of negative outcomes is an important route to the over-

optimism of the volunteers, and that one of the underlying neural 

malfunctions associated with depression is associated with a 

weakening of this withdrawal, thereby leading to more accurate, but 

more pessimistic, evaluations (Huys and Dayan, 2008). Consider a 

healthy subject entertaining chains of thought about the future. Any 

chain of thought leading towards a negative outcome engenders a 

Pavlovian withdrawal response, which may lead to its being 

terminated or (in the jargon of tree-based search) pruned. Thus if 

healthy subjects contemplate the future, they will tend to favour 

samples with more positive outcomes, and will therefore be more 

optimistic. Given the possibility that this form of Pavlovian 

withdrawal is mediated by 5-HT, as the putative aversive opponent 

to dopamine (Daw et al., 2002), and the pharmacological 

suggestion that depressed patients have low effective 5-HT levels 

(Graeff et al., 1996), it is conceivable that this withdrawal 

mechanism is impaired in the depressed subjects. This would, of 

course, lead to the basic phenomenon of depressive realism. 

Indeed, boosting 5-HT, which is the ultimate effect of the standard 

treatment for depression, namely selective 5-HT reuptake 

inhibitors, helps restore the original optimism. 

 

Altered levels of 5-HT are also associated with other phenomena 

such as impulsivity (Cardinal, 2006; Chamberlain and Sahakian, 

2007) which have been argued to have Pavlovian roots. 

 



 

3.5 Dread.  

 

In an aversive domain, many subjects show an additional sort of 

impulsivity in the form of dread (Berns et al., 2006). They prefer a 

larger electric shock that comes sooner to a weaker shock that 

comes later, reportedly because of the misery of aversive 

anticipation (Caplin and Leahy, 2001; Loewenstein, 1987; 

Loewenstein, 2006). Indeed, during the anticipation phase in the 

study by Berns and colleagues, brain regions commonly associated 

with physical pain are activated, as if the anticipation was indeed 

actually miserable. Subjects also exhibit related behaviours such as 

not collecting free information if it is likely to provide bad news.  

These phenomena can be decision-theoretically rebadged by 

appealing to a psychologically rich utility model (Caplin and Leahy, 

2001). The question for us is the psychological context of these 

utilities. 

 

Three Pavlovian issues appear to be important. First, the activation 

of the primary pain system is consistent with a Pavlovian 

phenomenon called stimulus substitution, in which predictors of 

particular outcomes are treated in many respects like those 

outcomes themselves. Although the neural foundations of this are 

not clear, let alone its evolutionary rationale, it is an effect that is 

widely described, particularly in appetitive circumstances. For 

instance, the way that a pigeon treats a key which has a Pavlovian 

association with an appetitive outcome depends directly on whether 

it is food or water that is predicted. The pecks that result are 

recognisably associated with the specific outcome itself. The 

activation of the primary pain areas may arise through model-based 

stimulus substitution. If this then leads to an effective overcounting 



of the temporally distant shock, it can make the subject prefer the 

immediate one. 

 

The other two Pavlovian effects are related to those discussed in the 

context of depressive realism. Not seeking information that is likely 

to be aversive is exactly akin to not exploring, or actually pruning, 

paths of thought that are likely to lead to negative outcomes. For 

dread itself, we can speculate as to the effects of the guaranteed 

prospect of a substantially delayed, future aversive outcome whose 

occurrence cannot be accurately predicted because of the 

inaccuracy in timing intervals (Gibbon et al., 1997). This has both 

model-based and model-free consequences for the Pavlovian 

mechanism that creates optimism through pruning. From a model-

based perspective, it creates a prior expectation of environments 

that are relatively unpleasant because they contain unpredictable 

aversive outcomes. Such environments are in general associated 

with larger average aversive values and so lead to Pavlovian 

avoidance (Huys and Dayan, 2008). From a model-free perspective, 

the persistent expectation of an aversive outcome might set a 

baseline level for the Pavlovian mechanism that prunes negative 

lines of thought. Since this baseline would be substantially more 

negative than usual, it would permit substantially more negative 

paths than normal to be explored, and therefore lead to net 

aversion. 

 

 

4. Aversively motivated behaviour.  

 

We have so far used the analysis of the architecture of choice to 

highlight how Pavlovian predictions of aversive outcomes can lead 

to aberrant influences over instrumental choices in a wide variety of 



circumstances. However, there is an important instrumental 

component to aversive behaviour too. Despite the apparent lack of 

current neuroeconomic interest in the topic, we will discuss 

avoidance, which is perhaps the most important such paradigm. 

 

In an avoidance experiment, animals (or humans) learn actions that 

reliably lead to their avoiding incurring losses or pains.  Typically, 

an animal receives a warning stimulus (such as a tone or light), that 

precedes delivery of an aversive stimulus, such as prolonged 

electrification of the floor of one compartment of the experimental 

apparatus. At first, the individual responds only during the aversive 

stimulus, for instance escaping the shock by jumping into a 

neighbouring compartment. Conventionally, the warning stimulus 

will be extinguished following this escape response. After several 

presentations, the escape response is executed more quickly, and 

eventually, the individual learns to jump when observing the 

warning stimulus (again with the effect of turning off this stimulus), 

thus completely avoiding the shock.  

 

Consideration of the problems that must be solved in avoidance 

hints that such behaviour may not be straightforward. For instance, 

how are successful avoidance actions reinforced, if by definition 

they lead to no outcome? (How) does a subject ever realise that the 

threat is gone, if it is never sampled?  

 

Mowrer famously suggested that learning to avoid involves two 

processes: predict ing the threat, and learning to escape from the 

predictor (Mowrer, 1947). These processes, proposed respectively 

to be under Pavlovian and instrumental control, comprise two-factor 

theory, which in one form or another has survived well over the 

past decades. Although there are many unanswered questions 



about precisely how the different action systems are orchestrated in 

different avoidance situations, some key facts are well supported.  

 

In particular, Pavlovian mechanisms play a critical (and 

multifarious) role in avoidance, and indeed Pavlovian responses to 

the warning stimulus alone are often capable of implementing 

successful avoidance. For example, jumping out of an electrified 

chamber, blinking in anticipation of an eye-puff, leg flexion to an 

electric foot plate can all completely remove an aversive stimulus, 

without any need for an instrumental component. That they do pays 

tribute to their evolutionary provenance, and led some to question 

the involvement of instrumental responses at all (Mackintosh, 1983) 

for review). The latter is implied by the experimenter-controlled 

arbitrariness of the required avoidance actions (although more 

arbitrary ones are slower to learn (Biederman et al., 1964; Ferrari 

et al., 1973; Hineline, 1977; Riess, 1971)).  

 

Further, there is good evidence that the safety state that arises 

from successful avoidance acts as a Pavlovian aversive inhibitor 

(Candido et al., 2004; Dinsmoor, 2001; Morris, 1975; Rescorla, 

1969; Weisman and Litner, 1969a), that is a state that predicts the 

absence of otherwise expected punishment. Importantly, as 

mentioned above, the values of aversive inhibitors at least partly 

share a common representation with those of appetitive excitators, 

ie. predictors of rewards, as is demonstrated by their ability to 

affect subsequent learning in appetitive domains (a phenomenon 

knows as transreinforcer blocking). That the safety state plays an 

important role in control is suggested by the fact that avoidance 

responses continue long after the Pavlovian aversive responses to 

the discriminative stimulus have extinguished, as they will of course 

do if avoidance is successful  (Weisman and Litner, 1969b).  

 



This places in the spotlight the role of the value attached to the 

warning stimulus (Bersh and Lambert, 1975; Biederman, 1968; De 

Villiers, 1974; Kamin et al., 1963; Mineka and Gino, 1980; 

Overmier et al., 1971a; Overmier et al., 1971b; Starr and Mineka, 

1977). On one hand it has the power to initiate Pavlovian 

preparatory responses. It is also known to be able to suppress 

appetitive instrumental behaviour, in a similar fashion to 

conditioned suppression by an aversive Pavlovian predictor. On the 

other hand, it has the instrumental power to initiate an appropriate 

avoidance response. 

 

The dissociation of components in avoidance is supported by neural 

data. For instance, selective lesions of the central amygdala 

selectively impair conditioned suppression (aversive PIT) (Killcross 

et al., 1997). Further, neuroleptics, which are dopamine antagonists 

interfere with learning avoidance responses, but not acquisition of 

instrumental escape responses (Cook and Catania, 1964). This 

effect is of particular interest, since it suggests that it may only be 

the dopaminergically-reported appetitive outcome of reaching the 

safety state that can control instrumental learning of the avoidance 

response, as if the reduction of the aversive prediction itself is 

insufficient. This would be a very strange asymmetry between 

appetitive and aversive systems, and merits closer investigation.  

 

In human studies, in support of the role of appetitive pathways, 

dorsal striatum and ventromedial prefrontal cortex display reward-

signed activities during avoidance (Kim et al., 2006; Pessiglione et 

al., 2006). Furthermore, they do so in a manner predicted by 

reinforcement learning models.  

 

There are known to be model-based components to avoidance 

learning. As we discussed in section 2, one signature of this is the 



immediate sensitivity of actions to changes in the state of the 

subject that change the values of outcomes. An example of this 

outcome-sensitivity is an experiment that manipulated body 

temperature. Henderson and Graham (1979) trained rats to avoid a 

heat source when rats were themselves hot. They then made the 

animals cold before testing them, and found that avoidance was 

attenuated, provided the rats had had the opportunity to experience 

the heat source in their new, cold state, thereby learning that it was 

rewarding. Selective lesions that dissociate goal-directed and habit-

based components of the avoidance action are, however, currently 

lacking. 

 

Sampling biases also pose a particular problem for aversive 

learning, since subjects will be unwilling to try options with aversive 

consequences in order to hone their behaviour (Denrell and March, 

2001). In fact, the sloth of extinction in avoidance is an example of 

this -- if successful avoidance becomes reliably executed, how will 

the organism know if the threat has disappeared (termed the ‘hot 

stove effect’ in economics). This contrasts with the appetitive case 

in which extinction is immediately frustrating. Pavlovian withdrawal 

will also severely hinder learning actions that lead to small, 

immediate, losses, but large, delayed, gains. 

 

Of course, unnecessary avoidance is only economically problematic 

if there is some non-negligible cost to performing the action, or if 

unbeknownst to the organism, the action now leads to rewards. The 

problem of correctly navigating this issue is an example of the 

famous exploration-exploitation dilemma, which is raised elsewhere 

in the volume. Briefly, the battle is between exploiting existing 

knowledge, namely the lack of punishment that evidently ensues 

from performing the avoidance action, and exploring the possibility 

that the environment has changed such that the punishment is no 



longer present. The optimal solution to this dilemma is radically 

computationally intractable, since it depends on calculations 

associated with the uncertainties of unknown change. One 

conventional approximate approach is to behave non-

deterministically, thus constantly sampling apparently lower-valued 

options stochastically. Another, sometimes more proficient 

alternative is specifically to target actions whose consequences are 

more uncertain, as in uncertainty ‘bonus’ schemes. The effect of 

these, in either appetitive or aversive domains, is to make subjects 

less risk- (and indeed ambiguity-)averse.  

 

In sum, there is a substantial, subtle, literature on learned 

avoidance showing a range of intricate effects. Presently, little of 

this has had an impact in neuroeconomic paradigms, but it is a ripe 

area for exploration. 

 

5. Conclusions 

 

Aversion is not merely reward viewed through a looking glass. As 

we have reviewed here, aversion poses its own range of critical 

representational and learning phenomena, and exerts an important 

influence over a wealth of ecologic and economic tasks. We focused 

on just a few of these – the substantial Pavlovian effects over 

experimental-, behavioural- and neuro-economic constructs, and 

the intricate complexities of avoidance learning; but there are also 

many other central issues that are being actively explored. From an 

economic perspective, much flows from the basic finding that mere 

monetary losses act in a very wide range of ways like real pains, 

thus allowing direct generalization from (and indeed to) an 

extensive psychological and neural literature. 

 



Opponency has been a central concept in this chapter, as indeed it 

has been over a wealth of psychological investigations. 

Unfortunately, although it is relatively uncontroversial that one of 

the opponents is dopamine, the identity, nature and even exact 

functional role of the other is much less clear. We and others have 

argued in favour of the involvement of 5-HT, however, this is not 

yet totally accepted. Further, whether 5-HT, or the opponent, 

reports all punishments, or, for instance, only those punishments 

that are uncontrollable, or something else, is not yet evident. 

 

Aversion is critical, pervasive, and interesting. Most relevantly, it is 

in clear need of the theoretical sophistication of neuroeconomic 

methods and analyses that are evidently on offer.  

 

Figure caption. Model-based and model-free actions in a 

simplified maze task. 1a shows a simple maze with three states 

(S1, S2 and S3) from which the animal has to make left-right 

decisions, with the terminal states yielding outcomes of cheese, 

nothing, water or carrots. 1b shows the values of these outcomes 

under three different motivational states: hunger, thirst, and cheese 

devaluation. This latter state results from cheese ingestion with 

vomiting (artificially induced by Lithium Chloride injection in most 

experiments). 1c specifies a tree-based model of the state-action 

environment, which can be used to guide decisions at each state by 

a model-based controller. 1d specifies the cached values available 

to a model-free, habitual controller. Immediately after cheese 

devaluation, these values do not change, in contrast to the model-

based controller). It is only after direct experience with the 

devalued cheese that the value associated with Left (S2), and 

subsequently Left (S1), is reduced. Figure adapted from Niv, Joel & 

Dayan (2006). 
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