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The human orbitofrontal cortex is strongly implicated in appetitive valuation. Whether its role extends to support comparative valuation
necessary to explain probabilistic choice patterns for incommensurable goods is unknown. Using a binary choice paradigm, we derived
the subjective values of different bundles of goods, under conditions of both gain and loss. We demonstrate that orbitofrontal activation
reflects the difference in subjective value between available options, an effect evident across valuation for both gains and losses. In
contrast, activation in dorsal striatum and supplementary motor areas reflects subjects’ choice probabilities. These findings indicate that
orbitofrontal cortex plays a pivotal role in valuation for incommensurable goods, a critical component process in human decision
making.

Introduction
Many everyday decisions involve comparing the value of avail-
able options. Often, the nature of the options varies widely, and
such incommensurable outcomes require comparison according
to some sort of common value currency. How the human brain
effects such comparisons is still unclear. A role for the orbitofron-
tal cortex (OFC) in valuation under conditions of simple appet-
itive choice is well established (Tremblay and Schultz, 1999; Got-
tfried et al., 2003; Padoa-Schioppa and Assad, 2006). A more
extended role for the OFC is evident in more complex contexts
including the subjective valuation of delayed rewards (Kable and
Glimcher, 2007) and the amount subjects are willing to pay for
foodstuffs (Plassmann et al., 2007). This more generalized evalu-
ative function makes it a plausible substrate for value compari-
son. Indeed, neurons in the OFC are known to respond to value
similarly under conditions of both gain and loss (Hosokawa et al.,
2007). It follows that if this region is involved in value compari-
son, these processes are likely to display corresponding
symmetry.

To address these issues, we designed a paradigm that involved
value comparison during economic choice between goods of dif-
ferent classes (money, foodstuffs, noncomestible consumer
goods) under conditions of both gain and loss. In practice, choice
behavior is probabilistic based on a computation of the relative

values of the options under consideration (Kahneman and Tver-
sky, 1979; Vulkan, 2000; Blavatsky, 2008). This indeterminism is
frequently characterized using sigmoid choice kernels (Camerer
and Ho, 1999) and suggests that comparison involves not just
establishing what is preferable but quantifying by how much, an
essential process in assigning choice probabilities according to
such a kernel. It follows that these probabilities are likely to be
reflected in neural activity in brain regions involved in linking
value with overt behavioral responses.

In this experiment, we derived the subjective values of bundles
of goods offered to a subject, together with their respective choice
probabilities, using a repeated binary choice paradigm and a logit
analysis (Camerer and Ho, 1999; Lau and Glimcher, 2005). This
involves fitting a logistic sigmoid to a subject’s choice pattern and
is formally equivalent to a softmax decision rule (Sutton and
Barto, 1998). We have previously shown that a softmax rule can
capture subjects’ behavior in the context of reward learning un-
der uncertainty (Daw et al., 2006). Logit techniques provide a
method for estimating both relative values and choice probabil-
ities, since the latter can be derived from the shape of the sigmoid
curve. By implementing such an approach, we could use our
behavioral data to generate parametric regressors that provided
the key variables in our analysis of simultaneously acquired func-
tional magnetic resonance imaging (fMRI) data. Our principal
hypothesis was that activity in the medial OFC (mOFC) would
correlate with a difference in value between the options presented
to a subject on a trial-by-trial basis in both conditions. In con-
trast, based on previous evidence, we predicted that choice prob-
abilities would be reflected in activation of dorsal striatum (Lau-
wereyns et al., 2002) and cortical areas involved in motor
planning (Platt and Glimcher, 1999; Nachev et al., 2008).

Materials and Methods
Subjects. Sixteen (12 female) subjects, age range 19 –29, all right handed,
participated in the study. All subjects were free of neurological or psychi-
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atric disease and fully consented to participate. The study was approved
by the Joint National Hospital for Neurology and Neurosurgery (Univer-
sity College London Hospitals NHS trust) and Institute of Neurology
(University College London) Ethics Committee. After scanning subjects
were given a combination of cash/items according to the outcome of a
subset of decisions during the task.

Stimuli and task. Subjects made a series of binary preference decisions
between sums of money (£1–25 in £3 increments) and one to three prize
objects (1A, 2A, 3A, 1B, 2B, 3B, 1A plus 1B), where A and B could be any
two of the item types used in the task. We used multiple similar items
rather than different individual items because pilot data had shown sig-
nificant undervaluing of bundles of multiples identical items. This al-
lowed us to be sure that any neural activity in response to behaviorally
derived subjective values did not simply reflect some objective feature of
the items (e.g., perceived cost), but rather their subjective desirability.
Because we wanted to specifically test the neural mechanisms by which
values are compared, we presented these simultaneously rather than se-
quentially, on either side of a fixation cross for 2200 ms. This was fol-
lowed after a 500 ms gap by the appearance of two round dots at the
image locations, signaling that the subject should make their choice.
Subjects indicated their choices by pressing a button with their index
finger on one of two MRI-compatible button boxes held in either hand,
the left-hand box indicating a selection of the image presented on the left
side of the screen, and vice versa. If the subject made a selection within the
allowed time (1000 ms), a red ring appeared around the green dot on
their chosen side. Intertrial interval was jittered between 2000 and 2500
ms (Fig. 1). Each possible sum/object bundle combination (n � 63) was
presented four times, twice in each spatial configuration in a pseudoran-
domized order counterbalanced across half sessions.

Visual cues were presented on a computer monitor projected onto a
screen, visible via an angled mirror on top of the fMRI head coil. The
visual stimuli were photographs of the objects used in the task, and
monetary amounts in text, �6 cm in diameter viewed on the projector
screen from a distance of �50 cm. They were fully balanced and random-
ized across subjects. Each subject performed two sessions of the task, one
in a “gain” condition, and one in a “loss” condition. This enabled us to

examine to what extent the comparison of gains
and losses resemble one another neurophysi-
ologically. In the loss condition, subjects had
already received three of each task item used in
that session (i.e., 3A and 3B) together with £25
in cash. They were then asked to choose on each
trial which of the two options presented they
would prefer to lose. In contrast, in the gain
condition, subjects began with nothing and se-
lected what they would prefer to receive. The
order of these sessions was fully counterbal-
anced between subjects. To harmonize termi-
nology across conditions, the “selected” option
will refer to the cash/objects that the subject
chose either to gain or to keep, rather than to
the one the subjects actually indicated with
their button press.

Items used in the task were 2 GB universal
serial bus (USB) keys, mugs, boxes of choco-
lates, and boxes of luxury biscuits. We used two
foodstuffs and two nonfoodstuffs to attempt to
demonstrate that the activity we found was not
related simply to one class of good. For each
subject, two of these item types were used in the
win condition and two in the loss. The distribu-
tion of task items was counterbalanced across
subjects, across item classes (food/nonfood),
and across experimental conditions. At the end
of the experiment, subjects drew two raffle tick-
ets from separate bags. They then received what
they had chosen on the trial corresponding to
the number on the “gain” ticket and lost (from
the items and money they had previously been
given) what they had chosen on the trial corre-

sponding to the number on the “loss” ticket. Participants were not com-
pensated other than their winnings on the experiment. Subjects were told
that if the ticket number corresponded to a trial on which they made no
response, then they would either gain nothing or lose both of the goods
presented on that trial. In practice, due to the very small number of errors
committed, this did not happen.

Before scanning subjects underwent a computerized tutorial to famil-
iarize them with the task. At the end of this, subjects were asked to
describe the task to check that they understood it. All were able to do so
adequately. They were also left with the task items for at least 5 min and
instructed to familiarize themselves adequately with them. This was de-
signed to ensure that they developed clear valuations of the items and also
that subjects believed that they would receive the items after the
experiment.

Behavioral analysis. The proportion of trials on which a subject chose
cash were plotted separately for each offer value, in relation to each item
bundle. These distributions were then fitted with a logistic sigmoid func-
tion. The underlying value of the bundle was estimated based on the
indifference point, reflecting the monetary value at which the subject was
equally likely to choose either offer. The estimated value of the item
bundle, together with the shape of the logistic sigmoid itself, was then
used to construct parametric regressors for use in the fMRI analysis as
described below. Subjects in whom it proved impossible to derive value
estimates for at least one bundle type either through inconsistency (n �
1) or because bundle values exceeded £25 (n � 1) were discarded from
behavioral and imaging analysis. All behavioral analysis was performed
using Matlab 6.5 (MathWorks).

fMRI. Gradient-echo T2*-weighted echo-planar (EPI) images were
acquired on a 3T Allegra Siemens scanner. Scanner settings (echo time,
0.065 ms; repetition time, 2.6 s; 40 2 mm slices acquired in descending
order at an angle of 30° in the anterior–posterior axis) were designed to
optimize sensitivity in the OFC (Deichmann et al., 2003). In each session,
598 images were collected (�25 min each, two per subject). Whole-brain
1 mm � 1 mm � 1 mm T1-weighted structural images were also ac-
quired, coregistered with mean EPI images, and averaged across subjects

Figure 1. Illustration of a single trial of the task paradigm (trials were visually identical in both gain and loss sessions). Subjects
fixated for an interval jittered between 2000 and 2500 ms, after which they were presented with a choice between a sum of money
between £1 and £25 and a bundle of one or more items. In gain sessions, subjects had been shown both money and items, but not
yet received them, and they were asked to decide which they would prefer to acquire out of the money and the items. In loss
sessions, subjects had already been given £25 and all items to be offered in that particular session, and were asked to choose which
they would prefer to give up. These options, as illustrated, were displayed for 2200 ms on either side of the fixation cross. They then
disappeared, and after an interval of 500 ms, two green circles appeared, instructing the subject to make a choice. Successful
choices (made within the 1000 ms choice-screen display time) were indicated by the appearance of a red ring around the circle on
the side chosen.
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to permit anatomical localization. Subjects lay in the scanner with foam
head-restraint pads to minimize any movement. They responded using
two fMRI-compatible button boxes.

Preprocessing and statistical analysis were performed using SPM5
(Wellcome Trust Centre for Neuroimaging, London, UK, www.fil.ion.
ucl.ac.uk/spm). After discarding the first eight images to allow for T1
equilibration effects, images were realigned with the first volume, nor-
malized to a standard EPI template, and smoothed using an 8 mm full-
width at half-maximum Gaussian kernel. Realignment parameters were
inspected visually to identify any potential subjects with excessive head
movement, and those with excessive movement (n � 2) were removed
from imaging analysis.

Primary analysis. Images were analyzed in an event-related manner
using the general linear model, with trials represented by a boxcar func-
tion of duration equal to that of image presentation (2200 ms). These
events were then modulated by five parametric regressors. Three of these
were generated using the values derived from subjects’ estimated indif-
ference points. The first of these was the summed value of the two offers
presented on the particular trial (LV) (V1 � V2). The second was the
absolute value (AV � �PE�) of the prediction error for the summed value
generated using a simple Rescorla-Wagner learning rule such that
PV(1) � 0; and for all t � 1: PE(t) � LV(t) � PV(t); PV(t � 1) � PV(t)
� � � PE(t), where PE is the prediction error, t is the trial number, � �
0.01, and PV is the predicted value. We attempted to model prediction
errors in this study using both the actual prediction error and the abso-
lute value of it, and used � values between 0.01 and 0.9, and have selected
0.01 since this yielded the largest parameter estimate in the peak voxel in
the ventral striatum. Since we found no significant activations corre-
sponding to a simple prediction error, we do not discuss it further. Nor
do we make any particular claims for the precise learning rate exhibited
by subjects, since our search was not exhaustive. The third, key, regressor
was the difference between the offer values (DV) (�V1 � V2�).

We define DV as the absolute value of the difference between the
options available to the subject. A similar regressor could be generated by
subtracting the value of the unchosen from that of the chosen option
(since subjects are extremely likely to choose the higher valued option).
Thus, we have selected the definition of DV used in our analyses on
theoretical grounds. The idea that agents compare the values of options
available to them, and then select between them stochastically, based on
probabilities derived from some nonlinear choice kernel is well estab-
lished (Corrado et al., 2005; Lau and Glimcher, 2005; Daw et al., 2006;
Padoa-Schioppa and Assad, 2006; Kable and Glimcher, 2007; Tom et al.,
2007). This fits better with DV as defined here and obviates the need to
interpret what the negative parameter value derived when subjects chose
a lower-valued option might mean either neurophysiologically or in
terms of decision making.

We used the shape of the logistic sigmoid to derive estimates of the
maximum choice probability (the probability of choosing the more
highly valued option, which thus varied from 0.5 to 1.0) on each trial
(MP). This is a measure of how far choices are biased away from indif-
ference by the values of the options under consideration. We also gener-
ated a parametric regressor based on the side of the screen on which the
selected offer was presented (side). These regressors were orthogonalized
in the order LV, AV, DV, MP, and side using the Gram-Schmidt process
(see supplemental Fig. S5, available at www.jneurosci.org as supplemen-
tal material). The resulting stimulus functions were then convolved with
a hemodynamic response function (HRF). Regression was performed
using restricted maximum likelihood estimations in SPM. Effects of no
interest included error trials and realignment parameters from the image
preprocessing to provide additional correction for residual subject mo-
tion. Low-frequency fluctuations were removed using a high-pass filter
(cutoff 128 s) and an AR(1) model plus white noise was used to correct
for temporal autocorrelation. Group-level activation was determined by
performing a one-sample t test on the linear contrasts of the statistical
parametric maps (SPMs) generated during the first-level analysis.

Because the DV and MP regressors are highly correlated, in our main
model, activation due to MP could be misattributed to DV due to their
shared components. We performed a supplementary analysis in which
we switched the order of the two regressors in our model and hence their

order of orthogonalization (see supplemental Results, available at www.
jneurosci.org as supplemental material). We report DV and MP activa-
tions that are significant in both models. As a further measure, we per-
formed a conjunction analysis between the MP regressor from the main
model and the DV regressor from this second check model (supplemen-
tal Results, available at www.jneurosci.org as supplemental material). In
addition we analyzed the data using several different models containing
parameters that might plausibly have been encoded by the orbitofrontal
cortex, including the chosen value, the ratio between the two values, and
whether the subject chose money or the item bundle. We also looked at
whether activation patterns were significantly different for each of our
regressors on trials in which the goods on offer were foodstuffs as op-
posed to trials in which they were not. These results are all presented in
the supplemental material (available at www.jneurosci.org).

On the basis of previous work, contrast-specific regions of interest
(ROIs) were selected in the medial prefrontal/orbitofrontal cortices, an-
terior and posterior cingulate cortices, midbrain, and dorsal and ventral
striatum for the value contrasts (Kable and Glimcher, 2007; Hare et al.,
2008). We also included posterior parietal cortex and the supplementary
motor area as ROIs for the maximum choice probability contrast, areas
shown previously to be involved in initiating and controlling voluntary
action (Platt and Glimcher, 1999; Nachev et al., 2008). Changes in the
blood oxygenation level-dependent (BOLD) contrast in these regions
that exceeded p � 0.001 uncorrected and had a volume of �4 voxels (108
mm 3) are reported. Otherwise only changes that exceeded p � 0.05
(familywise error rate corrected) with a volume of 4 voxels or greater are
reported. Activation coordinates are given in Montreal Neurological In-
stitute space as generated by SPM5.

Post hoc analyses. As a quality control for the activation patterns gen-
erated by our group-level analysis, we performed a post hoc analysis. We
first divided trials according to whether the summed value of the items
presented on that trial fell into the lower, middle, or upper third of the
range in that session. We then modeled these as separate regressors in a
simplified model containing only these events, the choice screen onsets,
error trial onsets, and movement parameters. This model allowed us to
directly inspect the response patterns in brain regions whose activity was
modulated by LV. We then generated similar models for the AV, DV, and
MP regressors. Regions of interest were extracted from the results of the
primary model with a threshold of p � 0.001 (uncorrected) using the
MarsBaR SPM toolbox (http://marsbar.sourceforge.net/), and the aver-
age parameter estimates were calculated, along with 90% confidence
intervals.

Results
Behavioral results
Reaction time data demonstrated a significant difference between
the gain and loss frames (Table 1). Reaction times were signifi-
cantly longer in the loss frame ( p � 0.051 for a two-tailed t test,
p � 0.049 from the ANOVA used to analyze rejected offer value),
where there was both a main effect of size for the rejected option
( p � 0.00001) and a significant interaction between this and the
gain or loss frame ( p � 0.00001) (Fig. 2). Specifically, when a
subject was forced to accept a larger loss, their reaction time
increased by more than when they chose a larger gain (Fig. 2B).
This is consistent with the well established finding that approach
responses to aversive stimuli are slowed (Chen and Bargh, 1999),
and strongly suggests that losses were treated differently from
gains, in keeping with prospect theory (Kahneman and Tversky,
1979).

Table 1. Reaction times in both conditions pooled across subjects show a
significant difference between the gain and loss conditions

Mean (ms) 90% confidence interval

Gain 366.6 362.6 –370.7
Loss 373.7 369.3–378.0
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We also identified a significant negative correlation between
the difference in value between the two offers and the reaction
time ( p � 0.00001), with a trend toward a significant interaction
with condition ( p � 0.094) (Fig. 2C), where reaction times in the
loss frame were more strongly affected than gains. (The correla-
tion with value ratio was also highly significant.) This correlation
suggests that our value estimation procedure was broadly correct,
based on the assumption that choices where option values are
closer together are more difficult and hence take longer to make.
The logistic sigmoid provided a good fit for the data (mean R 2 �
0.9451, range 0.8718 – 0.9948). Examples are shown in Figure 2A.
Note that bundle valuations did not differ significantly between
gain and loss conditions ( p � 0.6469).

Bundle valuations showed significant intersubject variation
(supplemental Table S1, available at www.jneurosci.org as sup-
plemental material). Subjects also displayed considerable nonlin-
earity in valuing bundles containing multiples of items both for
same-item bundles (2A, 3A) and for mixed bundles (1A1B) (see
supplemental Results, Figs. S1, S2, available at www.jneurosci.org
as supplemental material). In other words, they valued bundles of
multiple items lower than would have been predicted by sum-
ming the values of their constituents. These results suggest that
their choices were made according to the bundles’ subjective val-
ues and not any objective features such as perceived price. The
significant undervaluing of mixed bundles (even when these were
of different classes, e.g., one box of chocolates and one USB stick)
is particularly striking, since it is difficult to explain either by an
appeal to subjects’ associations with the kind of “multipack” dis-
counting prevalent in an everyday consumer environment or re-
dundancy within the groups of offered items (there is no reason
why having a box of chocolates should make a USB stick less
useful).

Imaging results
Brain regions involved in assessment of value
Due to the simultaneous presentation format of the task, brain
areas involved in option valuation need to be sensitive to the
values of both the offers presented to the subject, hence we might
expect to see the sum of these two values represented in the BOLD
signal.

We first tested for regions where changes in the BOLD con-
trast were correlated with the sum of the presented values. No
regions were significantly correlated with the main effect of LV,
or with its interactions with the task frame once corrected for
multiple comparisons, but two regions in the anterior cingulate
([0, 30, 27], z � 3.58) and dorsolateral prefrontal cortex ([18, 57,
24], z � 4.17) showed significant activation in the loss � gain
interaction contrast at p � 0.001 uncorrected. No regions
reached significance at this level in the opposite gain � loss in-
teraction contrast, although a region of the ventral striatum ([9,
21, �6], z � 3.01) showed activation at a reduced significance
level ( p � 0.005 uncorrected). This may have been because sub-
jects had no need to keep track of the value of the choice set
presented on a given trial, since none of their subsequent deci-
sions would depend on this.

We next tested for AV. Activity in medial orbitofrontal cortex

Figure 2. A, Money-offer choice probabilities (red dots) fitted with logistic sigmoids (blue
lines) for four different offer types (i: one box of chocolates, ii: three USB sticks, iii: two boxes of
biscuits, iv: two USB sticks) in four different subjects. The data in i and ii were collected under
the gain condition, and those in iii and iv were collected under the loss condition. The green dot
indicates the estimated indifference point (here £5.48, 8.47, 15.54, 8.48), used to infer the value
of the item bundle. B, Reaction time data pooled between all subjects and binned in 20 percen-
tiles according to the value of the rejected option. Bars in blue indicate reaction times from the
gain frame, while bars in red indicate loss. Black lines represent 90% confidence intervals.
Reaction times were significantly longer in the loss frame than in the gain frame. There was also
a significant effect of rejected offer value, and a significant interaction between this and the
frame, where larger values are more strongly correlated with longer reaction times in the loss

4

frame. C, Reaction time data pooled between all subjects and in both frames and binned in
percentiles of 20 according to the difference between the option values. Black lines represent
90% confidence intervals. The difference in value was inversely correlated with the reaction
time, but this showed no interaction with the frame (gain or loss).
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([�12, 33, �9], z � 3.74) and left ventral
striatum ([�9, 6, �6], z � 3.96) correlated
with this regressor (supplemental Fig. S3,
available at www.jneurosci.org as supple-
mental material). We did not find a signif-
icant interaction with the task frame, but
note that the post hoc analysis suggests that
this correlation may have been driven
largely by the activity during gain trials
(supplemental Fig. S3, available at www.
jneurosci.org as supplemental material).
We note that this response profile is simi-
lar to that found in the ventral striatum in
a study examining valuation of condi-
tioned stimuli (O’Doherty et al., 2006).
However, in the latter study, subjects’
preferences were assessed ordinally and
only using juice rewards. The inference
here is that a more widespread set of re-
gions demonstrate this sort of response to
value during choice between incommen-
surable goods.

Comparative valuation
To decide between options, an agent needs
to be able to compare their subjective ex-
pected value. A softmax decision rule pre-
dicts this comparison should be made by
implementing a differencing operation
applied to previously estimated values. On
this basis, we tested for neural activity that
correlated during choice with a difference
in value of options offered to the subject.
Activity in the medial orbitofrontal cortex
([�15, 30, �6], z � 3.71) and posterior
cingulate ([�3, �36, 48], z � 4.48) signif-
icantly correlated with a difference in value
(Fig. 3). Note that this pattern was evident both for gain and loss
choices.

We report the orbitofrontal activation with the caveat that
precise anatomical localization and functional attribution in the
medial orbitofrontal regions is difficult even when using opti-
mized scanning protocols. We note that activation in similar lo-
cations is frequently described as mOFC (Plassmann et al., 2007;
Hare et al., 2008), and we follow this convention for consistency.
We acknowledge that in other contexts this region is referred to as
the subgenual cingulate cortex.

It should also be noted that posterior cingulate cortex (PCC)
activation was also found in other models using value ratio or
chosen value regressors in place of DV, and that since they are
both significantly correlated with it, we cannot claim with abso-
lute confidence that PCC is involved in the differencing opera-
tion. No such caveat applies to the mOFC, however. PCC activa-
tion patterns differed between models 1 and 2, but this is
inevitable, since in model 1 activation correlated with the com-
mon component of the MP and DV regressors is assigned to DV,
while in model 2 it is not.

Maximum choice probability
Maximum choice probability was reflected in activation within
the posteromedial frontal cortex ([0, �21, 51], z � 4.24) and,
most strikingly, the body of right caudate nucleus (several clus-
ters including [18, �21, 18], z � 3.96 and [21, 12, 18], z � 3.52)
(Fig. 4). A separate region of the medial OFC ([12, 30, �15], z �

3.00) was also activated at a slightly lower threshold ( p � 0.002).
The posteromedial frontal activation peak falls within the supple-
mentary motor area (SMA), but it is more posterior than in many
motor tasks (Picard and Strick, 1996), and might conceivably
encroach onto primary somatomotor cortices.

Value similarity (conflict)
A network of brain regions including the pre-SMA ([0, 33, 33],
z � 4.23) and bilateral insula cortices ([�36, 18, 9], z � 3.94 and
[30, 24, 6], z � 3.98) showed activity that was inversely correlated
with the difference in value of the choice items (see supplemental
Fig. S4, available at www.jneurosci.org as supplemental mate-
rial). This is in line with the behavioral data, which showed a
significant correlation between decreasing difference in value and
reaction times, and fits well with the general notion of an in-
creased role for these regions in conflicted (Botvinick et al., 2004;
Rushworth et al., 2005) or uncertain (Grinband et al., 2006)
choice.

Discussion
Humans are often faced with deciding between two courses of
actions with entirely different characteristics. For instance, we
often need to decide between spending money on a luxury such as
a painting or a holiday, or between paying for piano lessons or
better car insurance. That such incommensurable choice options
are comparable with any consistency at all is remarkable, and

Figure 3. A, Regions where activation correlated with the difference in value between presented options in the medial
orbitofrontal cortex and posterior cingulate cortex (image is at x � 0) (yellow: p � 0.001, red: p � 0.005, clusters �100 mm 3

in size shown). B, Parameter estimates for activation in the medial orbitofrontal cortex ROI at low (L), medium (M), and high (H)
difference values. Estimates in the gain frame are in blue, and those for the loss frame are in red. Black lines indicate 90%
confidence intervals.

Figure 4. A, Activity in the caudate nucleus and supplementary motor area correlated with the maximum choice probability as
estimated by the logit analysis (left image is at y � 12, right is at x � �3) (yellow: p � 0.001, red: p � 0.005, clusters �100
mm 3 in size shown). B, Parameter estimates for activation in the dorsal striatum (DS) ROI at low (L), medium (M), and high (H)
maximum choice probabilities. Estimates in the gain frame are in blue, and those for the loss frame are in red. Black lines indicate
90% confidence intervals.
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suggests an efficient neural system that channels options into a
core comparative valuation system.

Although our paradigm does not precisely replicate these
choice conditions, it is most parsimonious to interpret our be-
havioral findings as evidence for the comparison of disparate
alternatives based on an internal, subjective valuation scheme.
Recall that these decisions are more difficult (take longer) to
make when the values of the two options considered are similar,
as well as when the chosen outcome is more aversive (comparing
either gains to losses, or a greater foregone value to a lesser within
either of the frames). This clearly demonstrates that the values we
derived are highly relevant to choice behavior, and the intersub-
ject and intrasubject patterns of variation in these strongly sug-
gest that they were not the direct consequence of any objective
features of the task items, but rather reflected their perceived
worth to the subjects.

In support of our hypothesis related to valuation, we show
that activation in the medial orbitofrontal and perhaps posterior
cingulate cortices is correlated with the difference in value be-
tween presented options. This implicates these regions in encod-
ing value comparisons, not simply of the form that one option is
better than another, but assigning a quantity that reflects by how
much. This finding echoes recent evidence for the existence of a
cardinal, or cardinal-like, valuation scale in the orbitofrontal cor-
tex of the macaque (Padoa-Schioppa and Assad, 2006; Padoa-
Schioppa and Assad, 2008), and develops upon previous findings
suggesting that activity in this area indexes simple (ordinal) pref-
erence (Tremblay and Schultz, 1999; Elliott et al., 2008; Seymour
and McClure, 2008).

It is interesting to note that in a similar experimental para-
digm in monkeys, OFC neurons were found to encode chosen
value rather than DV. This discrepancy is difficult to resolve di-
rectly given the uncertainties about the relationship between the
BOLD response and single-unit activity (Logothetis, 2008). We
note that in this previous work, other cell classes were found with
different patterns of responding to values of offered rewards, and
that the DV signal seen here could conceivably be represented by
some form of population coding (Averbeck et al., 2006). It would
be interesting to address this issue more directly, perhaps using
fMRI in macaques.

Recent imaging studies have found strong evidence that
mOFC encodes the subjective value of foodstuffs in willingness-
to-pay paradigms (Plassmann et al., 2007; Hare et al., 2008) and
the net attractiveness of gambles (Tom et al., 2007). This kind of
evaluative process is implied but not directly indexed by the task
used here. Instead we look at a subsequent stage at which the
values of evaluated option are compared with one another. Thus
our findings represent a natural extension of these previous stud-
ies, and it is interesting that the same cortical region is involved in
each. Put together with recent findings on temporal discounting
(Kable and Glimcher, 2007) that suggest that valuations in this
area incorporates alterations (discounting) effected upon goods
by delay, there is a very strong case for suggesting that it is crucial
for representing and manipulating subjective value (Schoen-
baum et al., 2007; Rushworth and Behrens, 2008).

It is important to distinguish our aims and results from those
of Hare et al. (2008). Here the authors use a willingness-to-pay
paradigm by asking subjects whether or not they would like to
purchase an item at a particular price. They derive a “decision
value” metric by subtracting this price from the amount subjects
indicated they would pay for that same item when tested outside
the scanner. This is, as an approximation, a measure of the value
of each trial to the subject (and can be negative, when the price is

greater than the value they place on the object). In our paradigm,
subjects are not asked to weigh a loss (the price) against a gain
(the item). Rather, they are asked to compare goods within a
(gain or loss) domain, and choose which item or bundle they
prefer [the importance of distinguishing between gain and loss
domains is a central tenet of prospect theory (Kahneman and
Tversky, 1979), manifest in phenomena such as loss aversion and
the endowment effect (Kahneman et al., 2000)]. Because we are
specifically interested in this comparison process, and how it
drives choice, we derive our DV (difference in value) regressor by
subtracting the smaller option value from the larger. This is quite
distinct from decision value (it cannot, for example, take on a
negative value), and indeed correlates with neuronal activity in a
separate region of frontal cortex [mOFC as opposed to central
OFC as reported by Hare et al. (2008)]. Note that in our study the
value of each trial to the subject is best modeled by the chosen
value on each trial. We did not find any central OFC activation in
response to this regressor (see supplemental Table S7, available at
www.jneurosci.org as supplemental material), which may reflect
a key experimental difference arising out of a simultaneous bun-
dle presentation format of our task.

Similarly, it is important to make clear that although our par-
adigm involves both gains and losses, since subjects never make
decisions that involve interdomain comparisons (never trade off
a gain vs a loss) it does not speak to issues that might reflect either
an endowment effect or loss aversion, despite the fact that we see
an effect of decision frame (gain or loss) in our reaction time data.
Instead what we did find was the involvement of the OFC in
comparative valuation for choices that involved gains and losses.
This suggests that options are compared in a similar manner
whether the aim for the subject is to choose the smaller of two
losses or the larger of two gains. Previous studies have found that
neurons in macaque OFC encode preference for an appetitive as
opposed to a neutral stimulus in the same way as preference for
that same neutral stimulus over an aversive one (Hosokawa et al.,
2007). There is also evidence from an instrumental learning par-
adigm of greater activation within mOFC for both attained re-
wards and avoided punishments (Kim et al., 2006). These find-
ings can be subsumed under the general notion that orbitofrontal
cortex encodes the relative subjective desirability of outcomes
both between and within frames. This idea is attractive as it sug-
gests a straightforward way that decision making could move
beyond a monotonic gain/loss regime to more ecological, poly-
valent contexts where options have both clear merits and demer-
its, many not obviously commensurable (Rudebeck et al., 2006;
Rushworth et al., 2007).

We observed a network of regions sensitive to maximum
choice probability that included the caudate nucleus. This ac-
cords with a suggestion that the caudate nucleus and posterome-
dial frontal cortex are activated specifically during action selec-
tion (Gerardin et al., 2004). This makes intuitive sense in terms of
striatal anatomy: the dorsal striatum is more strongly connected
to motor regions of the frontal cortex, while the ventral striatum
is more strongly connected to OFC regions involved in valuation
(Alexander et al., 1990; Haber et al., 2000, 2006). Studies in the
macaque have suggested that neurons in this area are intimately
involved in linking reward and motor behavior (Kawagoe et al.,
1998; Lauwereyns et al., 2002; Ikeda and Hikosaka, 2003; Koba-
yashi et al., 2007). Our results suggest a more precise role, in
biasing motor responses according to choice probabilities de-
rived from a sigmoid decision kernel. This is important for un-
derstanding both normal corticostriatal function and its impair-
ment. Dopamine is critically important for the caudate’s role in
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influencing action (Nakamura and Hikosaka, 2006), and it is
possible that decision-making deficits observed in patients with
dopamine depletion (such as Parkinson’s disease) might be re-
lated to dopamine depletion in the region impairing its ability to
correctly bias action selection.

A recent study found that neuronal activity in ventral striatum
predicted purchasing during a shopping task (Knutson et al.,
2007). This differs from the MP regressor used here in that sub-
jects were presented with a significantly different experimental
paradigm (asking them about their willingness to pay a certain
amount for something rather than to compare the value of two
goods and express a preference). It also differs because the MP
regressor is symmetrical and is a measure of how far subjects’
choices were biased away from indifference, whichever option
they preferred, rather than an index for their liking for the item
per se.

It is interesting to speculate on how these findings relate to the
body of evidence that exists relating neuronal activity in the pa-
rietal cortex to choice (Platt and Glimcher, 1999; Dorris and
Glimcher, 2004; Sugrue et al., 2004). It is conceivable that the
caudate nucleus acts either directly or indirectly on these regions
to control firing such that a particular action is more or less likely
to be initiated, in a similar manner to that posited to occur during
reward guided saccades (Ikeda and Hikosaka, 2003). Although
we found posterior parietal activation that correlated with the
probability of choosing a particular side, it is difficult in the con-
text of this task to distinguish this from simple motor preparation
(represented by the “chosen side” regressor in our analysis).

It is difficult to be certain of the precise functional significance
of the neural responses to AV, but it might plausibly relate either
to monitoring of ongoing average reward levels in computational
models that incorporate response vigor (Niv et al., 2007), or to
implementational models that exploit opponent coding (Daw et
al., 2002).

Our data provide neurobiological evidence that attributes a
central role to the OFC in value comparison, where the critical
weighting is based on the differences in value between presented
options. These differences appear to be assessed using an abstract
valuation scale that functions similarly in both gain and loss do-
mains, and is used to influence choice probabilities. Thus, the
findings speak to a growing understanding of the neural pro-
cesses related to object valuation instantiated in this cortical re-
gion, processes that are essential in underpinning choice.
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