
duplicates were deleted to obtain predictions on the dispensability of the underlying
enzymatic reaction.

Comparison of Mycoplasma and Saccharomyces genomes
We calculated the frequency of non-essential genes in the M. genitalium and the
S. cerevisiae genomes (only single-copy genes were considered). Gene duplicates were
identified using a BLAST protein search, with at least 25% amino acid similarity (using
different thresholds do not affect our results). The list of putative essential Mycoplasma
genes is from ref. 26. We found 1,881 out of 3,003 single-copy yeast genes that are non-
essential. This figure is 83 out of 356 genes for Mycoplasma.
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The ability to use environmental stimuli to predict impending
harm is critical for survival. Such predictions should be available
as early as they are reliable. In pavlovian conditioning, chains of
successively earlier predictors are studied in terms of higher-
order relationships, and have inspired computational theories
such as temporal difference learning1. However, there is at
present no adequate neurobiological account of how this learn-
ing occurs. Here, in a functional magnetic resonance imaging
(fMRI) study of higher-order aversive conditioning, we describe a
key computational strategy that humans use to learn predictions
about pain. We show that neural activity in the ventral striatum
and the anterior insula displays a marked correspondence to the
signals for sequential learning predicted by temporal difference
models. This result reveals a flexible aversive learning process
ideally suited to the changing and uncertain nature of real-world
environments. Taken with existing data on reward learning2,
our results suggest a critical role for the ventral striatum in
integrating complex appetitive and aversive predictions to co-
ordinate behaviour.

Substantial evidence in humans and other animals has outlined a
network of brain regions involved in the prediction of painful and
aversive events3–6. Most of this work has concentrated on its simplest
realization, namely first-order pavlovian fear conditioning; how-
ever, the predictions in this paradigm are rudimentary, showing
little of the complexities associated with sequences of predictors that
are critical in psychological investigations of prognostication7.
These latter studies led to a computational account called temporal
difference learning1,8, which has close links with methods for
prediction, and optimal action selection, in engineering9. When
applied to first-order appetitive conditioning, temporal difference
learning provides a compelling account of neurophysiological data,
both with respect to the phasic activity of dopamine neurons in
animal studies, and with blood-oxygenation-level-dependent
(BOLD) activity in human functional neuroimaging studies10–15.
However, beyond this simple paradigm, the utility of temporal
difference models to describe learning remains largely unexplored.
Here we provide a neurobiological investigation based on aversive
and, importantly, sequential conditioning.

We used fMRI to investigate the pattern of brain responses in
humans during a second-order pain learning task. Fourteen healthy
subjects were shown two visual cues in succession, followed by a
high- or low-intensity pain stimulus delivered to the left hand
(Fig. 1a) (see Methods). Subjects were told that they were perform-
ing a study of reaction times and were asked to judge whether the
cues appeared on the left or on the right side of a display monitor.
The second cue in each sequence was fully predictive of the strength
of the subsequently experienced pain; however, the first cue only
allowed a probabilistic prediction. Thus, in a small percentage of

letters to nature

NATURE | VOL 429 | 10 JUNE 2004 | www.nature.com/nature664 ©  2004 Nature  Publishing Group



trials, the expectation evoked by the first cue would be reversed by
the second. This allowed us to study the neural implementation of
both the expectations themselves, and their reversals.

Two important aspects of most accounts of prediction learning
are the predictions themselves (termed values) and the errors in
those predictions9. Figure 1b shows the predictions associated with
each of the trial types 1–4. These predictions are calculated and
revised as new stimuli are presented. Figure 1c shows the associated
prediction error. The nature of this signal, which treats ongoing
changes in predicted values on an exact par with actual affective
outcomes, has helped to explain data on dopamine cell activity. This
prediction error signal drives learning by specifying how the
predictions should change. In appetitive conditioning the dopa-
mine projection to the ventral striatum is believed to be a critical
substrate for this signal, although apart from theoretical specu-
lations about opponent processing16, the equivalent for aversive
conditioning is less clear. As in earlier work on appetitive con-
ditioning, we used the temporal difference model to generate
regressors based on the values and prediction errors appropriate
to each individual subject13. Statistical parametric mapping of the
regression coefficients permits identification of regions associated
with, and in receipt of, information about predictions. Indeed, the
temporal difference value was (negatively) correlated with the
reaction times across subjects for the high-valued cues
(P , 0.001), even when considering the second-order cue alone
(P , 0.01). This result provides strong evidence that behavioural
reinforcement occurs in a manner consistent with the temporal
difference model.

The prediction error was highly correlated with activity in both
the right and the left ventral putamen (Fig. 2). Correlations were
also noted in the right head of the caudate, the left substantia nigra,
the cerebellum (bilaterally) and the right anterior insula cortex
(Fig. 2). Figure 3 shows the estimated responses in the right ventral
putamen. As the most straightforward model coupling prediction
error to BOLD signal would predict, positive (Fig. 3a) and negative
(Fig. 3b) prediction errors at various times in the trial are clearly
represented, as is the biphasic form of the prediction error (Fig. 3c).

We also investigated the representation of the temporal difference
value (combining the predicted and the actual pain value, for
reasons of analysis) by including the temporal difference value
term in our regression model. This revealed correlated activity in
the right anterior insula cortex (Fig. 4a). The estimated response is
illustrated in Fig. 4c. The importance of this structure in pain
learning has previously been identified5. In addition, we found

temporal difference value-related responses in the brainstem
(Fig. 4b). Precise anatomical localization of brainstem activation
is difficult with standard neuroimaging, although we note a con-
sistency with the probable location of the dorsal raphe nucleus. We
also observed temporal difference value-related responses in the
anterior cingulate cortex and the right amygdala, which did not
survive statistical correction for multiple comparisons.

The striking resemblance between the BOLD signal in the ventral
putamen and the temporal difference prediction error (Fig. 3) offers
powerful support for the temporal difference model, in particular
because this is a second-order paradigm. Other dynamic models of

 

 

 

 

Figure 1 Experimental design and temporal difference model. a, The experimental design

expressed as a Markov chain, giving four separate trial types. b, Temporal difference

value. As learning proceeds, earlier cues learn to make accurate value predictions (that is,

weighted averages of the final expected pain). c, Temporal difference prediction error;

during learning the prediction error is transferred to earlier cues as they acquire the

ability to make predictions. In trial types 3 and 4, the substantial change in prediction

elicits a large positive or negative prediction error. (For clarity, before and mid-learning are

shown only for trial type 1.)

Figure 2 Temporal difference prediction error (statistical parametric maps). Areas

coloured yellow/orange show significant correlation with the temporal difference

prediction error. Yellow represents the greatest correlation. Peak activations (MNI

coordinates and statistical z scores) are: right ventral putamen (put; (32, 0, 28),

z ¼ 5.38); left ventral putamen (put; (230,22,24), z ¼ 3.93); right head of caudate

(caud; (18, 20, 6), z ¼ 3.75); left substantia nigra (sn; (210,210,28), z ¼ 3.52); right

anterior insula (ins; (46, 22, 24), z ¼ 3.71); right cerebellum ((28, 246, 230),

z ¼ 4.91); and left cerebellum ((234,252,228), z ¼ 4.42). R indicates the right side.
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pavlovian conditioning, such as the SOP models, do not involve this
signal17. Our result adds to the growing body of neural and
psychological data supporting the biological basis of temporal
difference theory. In a framework called the actor–critic model
for instrumental conditioning (and some variants)18,19, the same
prediction error signal is also used to train stimulus–response habits
(called policies), ultimately leading to the choice of best possible
actions20. Again, this has been much more intensively studied from
the perspective of appetitive than aversive conditioning. Impor-
tantly, the higher-order process demonstrated here is a crucial
substrate for learning in the changing and uncertain conditions
that characterize real environments, and in principle is capable of
supporting complex behaviours.

Our findings add to the existing pharmacological, electrophysio-
logical, functional imaging and clinical evidence for the involve-
ment of the striatum in aversive processing and learning21. Given
that the BOLD signal in the same region is correlated with the
temporal difference prediction error for rewards13,15, this structure
may advance our understanding of precisely how aversive and
appetitive information are integrated to produce motivationally
appropriate behaviour in the light of (predictions of) both.

At present, the nature of the phasic aversive prediction error
signal is not clear. Substantial psychological data suggest the
existence of separate appetitive and aversive motivational systems
that act as mutual opponents over a variety of time courses22,23.
Given the (not unchallenged24) suggestion that dopamine neurons
in the ventral tegmental area and in the substantia nigra report
appetitive prediction error, it has been suggested that serotonin-
producing neurons of the dorsal raphe nucleus, which send strong
projections to the ventral striatum25, may encode aversive predic-
tion error16. We show prediction-related responses in an area that
incorporates this nucleus. There is an active debate about the
involvement of dopamine in aversive conditioning26,27, and an
alternative possibility is that dopamine reports both aversive and
appetitive prediction errors.

Our findings have important implications for our understanding
of human pain, given that substantial evidence indicates that

the experience of pain is modified by prior conditioning28. Here
we show regionally distinct neuronal responses, consistent with
established computational processes, providing a mechanism
through which the affective and motivational aspects of pain can
be modulated. A

Methods
Subjects and stimuli
The study was approved by the local ethics committee. Pain was delivered to the left hand
by means of two silver chloride electrodes, using a 100-Hz train of electrical pulses (4-ms
square waveform, 1-s duration). A variation of current amplitude (0.5–6.0 mA) was used
to deliver high- or low-intensity stimuli, set on an individual basis; mean intensity ratings
were 2.9 for low intensity and 8.0 for high intensity, on a 10-point scale. Post-experiment
debriefing showed no evidence of habituation or sensitization. The visual cues were
abstract coloured pictures, visible on a screen by means of a head coil mirror and presented
to the left or right of (and above or below) the centre. Different cues were used for the two
sessions, and fully counter-balanced.

The experiment
Each subject undertook two sessions, each representing a complete learning experiment
consisting of 110 trials. In each trial two cues were presented in sequence (for 3.6 s each)
followed immediately by a pain stimulus. Trials were separated by a randomized variable
delay of mean 5 s (range 3.5–6.5 s). The probabilistic architecture defined in Fig. 1a gives
four trial types, with types 1 and 2 occurring frequently (and solely for the first ten trials).
Subjects reported the position of the cue (left or right) as quickly as possible by pressing a
key, and were not told that the experiment was a learning task. Post-experiment debriefing
showed that no subjects were fully aware of all cue–outcome contingencies, although the
influence of awareness was not specifically addressed.

Temporal difference model
The sequence of cue and pain stimuli for each subject was entered into the temporal
difference learning model: TD(0)9 with no eligibility trace or discount factor, and on a trial
basis. Each trial had three time points: first cue, second cue and pain stimulus. The six
resulting states (s) were defined by the stimulus present at that time, each having a
corresponding predictive value V(s) (with an initial value of zero) and a return, r,
representing the pain (r ¼ 1 for the high intensity and r ¼ 0 otherwise). At each point in
time, t, the prediction error, d, was defined as d¼ rþVðst Þ2Vðst21Þ; that is, the
difference between successive value predictions.

The previous state value predictions were then updated according to the algorithm
V ðsÞˆVðsÞ þad;where a is the learning rate.

Figure 3 Temporal difference prediction error (impulse responses). Time course of the

impulse response (^s.e.m.) to higher-order prediction error in the right ventral putamen.

a, Positive prediction error (contrast of trial types 3 and 2). b, Negative prediction error

(contrast of trial types 4 and 1). c, Biphasic prediction error; positive at the first cue,

becoming negative at the second (contrast of trial types 4 and 2).

Figure 4 Temporal difference value (statistical parametric maps and impulse response in

the right anterior insula). a, b, Areas showing significant correlation with the temporal

difference value. Peak activations (MNI coordinates and statistical z scores) are: right

anterior insula (ins; (42, 16,214), z ¼ 4.16); brainstem ((0,228,218), z ¼ 3.89); and

anterior cingulate cortex (acc; (8, 12, 32), z ¼ 3.82). Coronal and axial slices of brainstem

activation are shown, highlighting localization to dorsal raphe nucleus. c, Time course of

impulse response (^s.e.m.) in right anterior insula cortex, from contrast of trial types 1

and 2.
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Data acquisition and analysis
We acquired T2*-weighted echo planar imaging (EPI) images with BOLD contrast on a 1.5
tesla Siemens Sonata magnetic resonance scanner (imaging parameters: 280 volumes;
2 mm slice thickness; 1 mm inter-slice gap; tilted plane acquisition sequence29).
T1-weighted structural images were co-registered with mean EPI images, and averaged
across subjects to allow group level anatomical localization.

Images were analysed using the statistical parametric mapping software SPM2.
Preprocessing consisted of spatial realignment, normalization to a standard EPI
template, and spatial smoothing with an 8 mm (full-width at half-maximum) gaussian
kernel. Images were then analysed in an event-related manner. Stimuli were encoded as
d-functions and multiplied by the temporal difference prediction error at each event
provided by the computational model for each subject, and then convolved with a
canonical haemodynamic response function (HRF). The parameter estimates (that is,
regression coefficients) were taken to a second level random effects group analysis using a
one-way analysis of variance.

Group level SPMs were initially given a threshold of P , 0.001, uncorrected (as shown
in Figs 2 and 4). To correct for multiple comparisons, we used 8 mm radius small volume
corrections (reporting family-wise error correction at P , 0.05) in our areas of interest,
based on data from previous investigations in our laboratory30 (ventral putamen, anterior
insula, anterior cingulate, amygdala and cerebellum). Areas in substantia nigra (Montreal
Neurological Institute (MNI) coordinates ^10, 214, 210), upper brainstem (0, 226,
220) and dorsal striatum (^12, 14, 3) were anatomically defined from our mean
structural image.

We report results using a learning rate of a ¼ 0.5. An approximate Taylor expansion of
the prediction error at a ¼ 0.5 and calculation of SPMs of the appropriate F-test,
suggested that this was near optimal, as did results from a ¼ 0.2 and a ¼ 0.8.

Impulse responses (Figs 3 and 4b) were characterized by supplementary analysis using
a flexible basis set of 2-s duration finite impulse responses on a trial basis (removing the
first ten trials of early learning). Time courses shown are the averaged estimated impulse
responses for each trial (with the areas of interest defined on a subject-specific basis from
the original temporal difference analysis).

The sum of the temporal difference and pain values (that is, 0 or 1) were incorporated
for analysis of temporal difference value (given that our design is not optimal for
distinction of the two), treating prediction error and pain as effects of no interest. We
applied a mask (at P , 0.05, uncorrected) of areas showing significant increases in activity
in the cue periods from the finite impulse response analysis to ensure identification of
purely predictive areas.

We normalized the reaction times (excluding those greater than 1,500 ms) using
cumulative distribution functions of individually fitted gamma-distributions and
regressed these values on the temporal difference value for the high pain-predicting cues.
In addition to the highly significant (P , 0.001) regression pooled over subjects, 8 out of
14 subjects showed individually significant correlations (P , 0.05), but no significant
fMRI differences.
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Shaping a developing organ or embryo relies on the spatial
regulation of cell division and shape. However, morphogenesis
also occurs through changes in cell-neighbourhood relationships
produced by intercalation1,2. Intercalation poses a special problem
in epithelia because of the adherens junctions, which maintain the
integrity of the tissue.Herewe address themechanismbywhich an
ordered process of cell intercalation directs polarized epithelial
morphogenesis during germ-band elongation, the developmental
elongation of the Drosophila embryo. Intercalation progresses
because junctions are spatially reorganized in the plane of the
epithelium following an ordered pattern of disassembly and
reassembly. The planar remodelling of junctions is not driven by
external forces at the tissue boundaries but depends on local forces
at cell boundaries. Myosin II is specifically enriched in disassem-
bling junctions, and its planar polarized localization and activity
are required for planar junction remodelling and cell intercalation.
This simple cellular mechanism provides a general model for
polarized morphogenesis in epithelial organs.
Drosophila germ-band elongation (GBE)3 leads to an almost

doubling in length of the epithelial layer that forms the thorax
and abdomen of the embryo (Fig. 1a, b). This extension is associated
with a mediolateral convergence of cells along the dorsoventral
(D/V) axis. Neither cell divisions nor changes in cell shape contrib-
ute to anteroposterior (A/P) axis elongation3; thus, GBE is solely
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